\(\times x^2+2014\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2018

a/ Với mọi x ta có :

\(\left|x-2\right|\ge0\)

\(\Leftrightarrow-\left|x-2\right|\le0\)

\(\Leftrightarrow10-\left|x-2\right|\le10\)

\(\Leftrightarrow A\le10\)

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

Vậy....

b/ Với mọi x ta có :

\(-3x^2\le0\)

\(\Leftrightarrow-3x^2+2014\le2014\)

\(\Leftrightarrow B\le2014\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy....

c/ Với mọi x ta có :

\(x^2\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+5\ge5\\x^2+1\ge1\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x^2+5}{x^2+1}\le5\)

\(\Leftrightarrow C\le5\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy...

d/ Với mọi x ta có :

\(\left|x-2\right|\ge0\)

\(\Leftrightarrow\left|x-2\right|+3\ge3\)

\(\Leftrightarrow\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)

\(\Leftrightarrow D\le\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

Vậy...

23 tháng 9 2018

I , tìm x :

a, \(\left|x\right|=1,21\)

Ta có : \(\left|x\right|=\left|1,21\right|\rightarrow\left|x\right|=\pm1,21\)

b, \(\dfrac{11}{12}-\left(\dfrac{2}{5}-x\right)=\dfrac{2}{3}\)

\(\dfrac{2}{5}-x=\dfrac{11}{12}-\dfrac{2}{3}\)

\(\dfrac{2}{5}-x=\dfrac{1}{4}\) => \(x=\dfrac{2}{5}-\dfrac{1}{4}\)

=> \(x=\dfrac{3}{20}\)

c, \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)

\(\dfrac{1}{4}\div x=\dfrac{2}{5}-\dfrac{3}{4}\)

\(\dfrac{1}{4}\div x=\dfrac{-7}{20}\) => \(x=\dfrac{1}{4}\div\dfrac{-7}{20}\)

=> \(x=\dfrac{-5}{7}\)

d,\(3^x=81\)

Ta có 81= \(3^4\)

Vì : \(3^x=3^4\Rightarrow x=4\)

e,\(\dfrac{1}{2}.\left|x\right|-\dfrac{5}{2}=\dfrac{8}{3}\)

\(\left|x\right|-\dfrac{5}{6}=\dfrac{8}{3}:\dfrac{1}{2}\)

=> \(\left|x\right|-\dfrac{5}{2}=\dfrac{16}{3}\) => \(\left|x\right|=\dfrac{16}{3}+\dfrac{5}{2}\)

=> \(\left|x\right|=\dfrac{47}{6}\)

\(\left|x\right|=\left|\dfrac{47}{6}\right|\Rightarrow x=\pm\dfrac{47}{6}\)

f, \(2^{x-3}=4\)

\(2^{x-3}=2^2\)

=> \(x-3=2\)

=> \(x=5\)

23 tháng 9 2018

a, Ta có \(\left|x\right|=1,21\)

\(\Rightarrow\left[{}\begin{matrix}x=1,21\\x=-1,21\end{matrix}\right.\)

Vậy \(x\in\left\{1,21;-1,21\right\}\)

16 tháng 9 2017

cái này mà bạn ko biết làm á, bấm máy tính tạch tạch mấy phát là ra mà

17 tháng 9 2017

lười làm nên nhờ mấy bạn giải dùm

8 tháng 11 2017

a) x = \(\dfrac{-64}{3}\)

b) x = -3,5

c) x = 80

d) x = -1.162

e) x = 0,9436

g) x \(\in\varnothing\)

9 tháng 11 2017

a) 16/3 : x = -1/4

=> x = 16/3 : (-1/4)

=> x = 16/3 . (-4)

=> x = -64/3

Vậy x= -64/3

b)2x - 13 = -8

=> 2x = (-8) + 1

=> 2x = -7

=> x = -7/2

d) 0,944 - 2x = 3,268

=> 2x = 0,944 - 3,268

=> 2x = -2,324

=> x = (-2,324) : 2

=> x = -1,162

g) \(\sqrt{5^2-3^2}=-\sqrt{81-x}\)

=> \(\sqrt{25-9}\)= \(-\sqrt{81-x}\)

=> \(\sqrt{16}\)=\(-\sqrt{81-x}\)

=> 4=\(-\sqrt{81-x}\)

tới đây mik bí r hk bt lm nữa

6 tháng 1 2018

a/ \(\dfrac{x+1}{2}=\dfrac{2x+3}{5}\)

\(\Leftrightarrow5\left(x+1\right)=2\left(2x+3\right)\)

\(\Leftrightarrow5x+5=4x+6\)

\(\Leftrightarrow5x-4x=6-5\)

\(\Leftrightarrow x=1\left(tm\right)\)

Vậy ...

b/ \(\left|x-1\right|+3\left|y+1\right|+\left|z+2\right|=0\)

Mà với \(\forall x;y;z\) ta có :

\(\left\{{}\begin{matrix}\left|x-1\right|\ge0\\3\left|y+1\right|\ge0\\\left|z+2\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\3\left|y+1\right|=0\\\left|z+2\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\z+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\z=-2\end{matrix}\right.\)

Vậy ...

c/ \(\dfrac{x-2}{4}=\dfrac{5-3x}{4}\)

\(\Leftrightarrow x-2=5-3x\)

\(\Rightarrow x+3x=5+2\)

\(\Leftrightarrow4x=7\)

\(\Leftrightarrow x=\dfrac{7}{4}\)

Vậy ......

d/ \(\dfrac{x+2}{4}=\dfrac{4}{x+2}\)

\(\Leftrightarrow\left(x+2\right)\left(x+2\right)=16\)

\(\Leftrightarrow\left(x+2\right)^2=4^2=\left(-4\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)

Vậy ...

e/ \(\dfrac{x-1}{5}=\dfrac{-20}{x-1}\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=-100\)

\(\Leftrightarrow\left(x-1\right)^2=-100\)

Lại có : \(\left(x-1\right)^2\ge0\)

\(\Leftrightarrow\) k tồn tại x

a: TH1: x>=0

=>x+x=1/3

=>x=1/6(nhận)

TH2: x<0

Pt sẽ là -x+x=1/3

=>0=1/3(loại)

b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)

c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)

\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)

\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)

\(\Leftrightarrow3x^2-63x+60=4x+72\)

=>3x^2-67x-12=0

hay \(x\in\left\{22.51;-0.18\right\}\)

3 tháng 8 2017

a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)

\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)

\(x=\dfrac{-7}{10}\)

b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)

\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)

\(x+\dfrac{5}{6}=\dfrac{16}{15}\)

\(x=\dfrac{16}{15}-\dfrac{5}{6}\)

\(x=\dfrac{7}{30}\)

c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)

\(\dfrac{7}{5}x=\dfrac{-43}{35}\)

\(\Rightarrow x=\dfrac{-43}{49}\)

d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)

\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)

\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)

\(x=\dfrac{1}{3}-\dfrac{3}{4}\)

\(x=\dfrac{-5}{12}\)

e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)

\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)

\(x+\dfrac{4}{5}=2,15-3,75\)

\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)

\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)

\(x=\dfrac{-12}{5}\)

f) \(\left(x-2\right)^2=1\)

\(\Rightarrow x=1\)

Sức chịu đựng có giới hạn -.-

3 tháng 8 2017

- Mình tiếp tục cho Nguyễn Phương Trâm nhé.

g, \(\left(2x-1\right)^3=-27\)

\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)

\(\Rightarrow2x-1=-3\)

\(\Rightarrow2x=-2\)

=> \(x=-1\)

- Vậy x = -1

h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)

\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)

\(\Rightarrow\left(x-1\right)^2=900 \)

\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)

=> x = 31

i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)

=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{1}{16}\)

- Vậy x=\(\dfrac{1}{16}\)

j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)

\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)

\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)

\(\Rightarrow x=\dfrac{3}{4}\)

- Vạy x = \(\dfrac{3}{4}\)

k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)

=>\(4^x=4\)

=> x = 1

- Vậy x = 1

11 tháng 7 2017

2) a) \(\left(x+\dfrac{4}{5}\right)^2=\dfrac{9}{25}\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{3}{5}\\x+\dfrac{4}{5}=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{5}\\x=\dfrac{-7}{5}\end{matrix}\right.\) vậy \(x=\dfrac{-1}{5};x=\dfrac{-7}{5}\)

b) \(\left|x-\dfrac{3}{7}\right|=-2\) vì giá trị đối không âm được nên phương trình này vô nghiệm

c) điều kiện : \(x\ge-7\) \(\sqrt{x+7}-2=4\Leftrightarrow\sqrt{x+7}=4+2=6\)

\(\Leftrightarrow x+7=6^2=36\Leftrightarrow x=36-7=29\) vậy \(x=29\)

d) \(x^2-\dfrac{7}{9}x=0\Leftrightarrow x\left(x-\dfrac{7}{9}\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-\dfrac{7}{9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\) vậy \(x=0;x=\dfrac{7}{9}\)

11 tháng 7 2017

1) tìm GTNN

a) \(B=\left|x-2017\right|+\left|x-20\right|\)

B \(\ge\left|x-2017-x+20\right|=\left|-1997\right|=1997\)

Dấu " = " xảy ra khi và chỉ khi 20 \(\le x\le2017\)

Vậy MinB = 1997 khi 20 \(\le x\le2017\)

b) \(C=\left|x-3\right|+\left|x-5\right|\)

\(C\ge\left|x-3-x+5\right|=\left|2\right|=2\)

Dấu " = " xảy ra khi 3 \(\le x\le5\)

Vậ MinC = 2 khi và chỉ khi 3 \(\le x\le5\)

c) \(C=\left|x^2+4\right|+3\)

Ta thấy \(x^2+4\ge0\) với mọi x

nên \(\left|x^2+4\right|+3=x^2+4+3=x^2+7\)\(\ge\) 7

Dấu " =" xảy ra khi x = 0

MinC = 7 khi và chỉ khi x = 0

a: Đặt A=0

=>-2/3x=5/9

hay x=-5/6

b: Đặt B(x)=0

=>(x-2/5)(x+2/5)=0

=>x=2/5 hoặc x=-2/5

c: Đặt C(X)=0

\(\Leftrightarrow x^3\cdot\dfrac{1}{2}=-\dfrac{4}{27}\)

\(\Leftrightarrow x^3=-\dfrac{8}{27}\)

hay x=-2/3

a: \(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)

Dấu '=' xảy ra khi x=-1 và y=1/3

b: \(\left(2x-1\right)^2+3>=3\)

Do đó: D<=5/3

Dấu '=' xảy ra khi x=1/2