Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I , tìm x :
a, \(\left|x\right|=1,21\)
Ta có : \(\left|x\right|=\left|1,21\right|\rightarrow\left|x\right|=\pm1,21\)
b, \(\dfrac{11}{12}-\left(\dfrac{2}{5}-x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}-x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}-x=\dfrac{1}{4}\) => \(x=\dfrac{2}{5}-\dfrac{1}{4}\)
=> \(x=\dfrac{3}{20}\)
c, \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}\div x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}\div x=\dfrac{-7}{20}\) => \(x=\dfrac{1}{4}\div\dfrac{-7}{20}\)
=> \(x=\dfrac{-5}{7}\)
d,\(3^x=81\)
Ta có 81= \(3^4\)
Vì : \(3^x=3^4\Rightarrow x=4\)
e,\(\dfrac{1}{2}.\left|x\right|-\dfrac{5}{2}=\dfrac{8}{3}\)
\(\left|x\right|-\dfrac{5}{6}=\dfrac{8}{3}:\dfrac{1}{2}\)
=> \(\left|x\right|-\dfrac{5}{2}=\dfrac{16}{3}\) => \(\left|x\right|=\dfrac{16}{3}+\dfrac{5}{2}\)
=> \(\left|x\right|=\dfrac{47}{6}\)
Vì \(\left|x\right|=\left|\dfrac{47}{6}\right|\Rightarrow x=\pm\dfrac{47}{6}\)
f, \(2^{x-3}=4\)
\(2^{x-3}=2^2\)
=> \(x-3=2\)
=> \(x=5\)
a, Ta có \(\left|x\right|=1,21\)
\(\Rightarrow\left[{}\begin{matrix}x=1,21\\x=-1,21\end{matrix}\right.\)
Vậy \(x\in\left\{1,21;-1,21\right\}\)
a) x = \(\dfrac{-64}{3}\)
b) x = -3,5
c) x = 80
d) x = -1.162
e) x = 0,9436
g) x \(\in\varnothing\)
a) 16/3 : x = -1/4
=> x = 16/3 : (-1/4)
=> x = 16/3 . (-4)
=> x = -64/3
Vậy x= -64/3
b)2x - 13 = -8
=> 2x = (-8) + 1
=> 2x = -7
=> x = -7/2
d) 0,944 - 2x = 3,268
=> 2x = 0,944 - 3,268
=> 2x = -2,324
=> x = (-2,324) : 2
=> x = -1,162
g) \(\sqrt{5^2-3^2}=-\sqrt{81-x}\)
=> \(\sqrt{25-9}\)= \(-\sqrt{81-x}\)
=> \(\sqrt{16}\)=\(-\sqrt{81-x}\)
=> 4=\(-\sqrt{81-x}\)
tới đây mik bí r hk bt lm nữa
a/ \(\dfrac{x+1}{2}=\dfrac{2x+3}{5}\)
\(\Leftrightarrow5\left(x+1\right)=2\left(2x+3\right)\)
\(\Leftrightarrow5x+5=4x+6\)
\(\Leftrightarrow5x-4x=6-5\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy ...
b/ \(\left|x-1\right|+3\left|y+1\right|+\left|z+2\right|=0\)
Mà với \(\forall x;y;z\) ta có :
\(\left\{{}\begin{matrix}\left|x-1\right|\ge0\\3\left|y+1\right|\ge0\\\left|z+2\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\3\left|y+1\right|=0\\\left|z+2\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+1=0\\z+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\z=-2\end{matrix}\right.\)
Vậy ...
c/ \(\dfrac{x-2}{4}=\dfrac{5-3x}{4}\)
\(\Leftrightarrow x-2=5-3x\)
\(\Rightarrow x+3x=5+2\)
\(\Leftrightarrow4x=7\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
Vậy ......
d/ \(\dfrac{x+2}{4}=\dfrac{4}{x+2}\)
\(\Leftrightarrow\left(x+2\right)\left(x+2\right)=16\)
\(\Leftrightarrow\left(x+2\right)^2=4^2=\left(-4\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
Vậy ...
e/ \(\dfrac{x-1}{5}=\dfrac{-20}{x-1}\)
\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=-100\)
\(\Leftrightarrow\left(x-1\right)^2=-100\)
Lại có : \(\left(x-1\right)^2\ge0\)
\(\Leftrightarrow\) k tồn tại x
a: TH1: x>=0
=>x+x=1/3
=>x=1/6(nhận)
TH2: x<0
Pt sẽ là -x+x=1/3
=>0=1/3(loại)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)
\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)
\(\Leftrightarrow3x^2-63x+60=4x+72\)
=>3x^2-67x-12=0
hay \(x\in\left\{22.51;-0.18\right\}\)
a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)
\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)
\(x=\dfrac{-7}{10}\)
b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)
\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)
\(x+\dfrac{5}{6}=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}-\dfrac{5}{6}\)
\(x=\dfrac{7}{30}\)
c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)
\(\dfrac{7}{5}x=\dfrac{-43}{35}\)
\(\Rightarrow x=\dfrac{-43}{49}\)
d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)
\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)
\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}-\dfrac{3}{4}\)
\(x=\dfrac{-5}{12}\)
e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)
\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)
\(x+\dfrac{4}{5}=2,15-3,75\)
\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)
\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)
\(x=\dfrac{-12}{5}\)
f) \(\left(x-2\right)^2=1\)
\(\Rightarrow x=1\)
Sức chịu đựng có giới hạn -.-
- Mình tiếp tục cho Nguyễn Phương Trâm nhé.
g, \(\left(2x-1\right)^3=-27\)
\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)
\(\Rightarrow2x-1=-3\)
\(\Rightarrow2x=-2\)
=> \(x=-1\)
- Vậy x = -1
h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)
\(\Rightarrow\left(x-1\right)^2=900 \)
\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)
=> x = 31
i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)
=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{16}\)
- Vậy x=\(\dfrac{1}{16}\)
j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)
\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{4}\)
- Vạy x = \(\dfrac{3}{4}\)
k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)
=>\(4^x=4\)
=> x = 1
- Vậy x = 1
2) a) \(\left(x+\dfrac{4}{5}\right)^2=\dfrac{9}{25}\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{3}{5}\\x+\dfrac{4}{5}=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{5}\\x=\dfrac{-7}{5}\end{matrix}\right.\) vậy \(x=\dfrac{-1}{5};x=\dfrac{-7}{5}\)
b) \(\left|x-\dfrac{3}{7}\right|=-2\) vì giá trị đối không âm được nên phương trình này vô nghiệm
c) điều kiện : \(x\ge-7\) \(\sqrt{x+7}-2=4\Leftrightarrow\sqrt{x+7}=4+2=6\)
\(\Leftrightarrow x+7=6^2=36\Leftrightarrow x=36-7=29\) vậy \(x=29\)
d) \(x^2-\dfrac{7}{9}x=0\Leftrightarrow x\left(x-\dfrac{7}{9}\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-\dfrac{7}{9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\) vậy \(x=0;x=\dfrac{7}{9}\)
1) tìm GTNN
a) \(B=\left|x-2017\right|+\left|x-20\right|\)
B \(\ge\left|x-2017-x+20\right|=\left|-1997\right|=1997\)
Dấu " = " xảy ra khi và chỉ khi 20 \(\le x\le2017\)
Vậy MinB = 1997 khi 20 \(\le x\le2017\)
b) \(C=\left|x-3\right|+\left|x-5\right|\)
\(C\ge\left|x-3-x+5\right|=\left|2\right|=2\)
Dấu " = " xảy ra khi 3 \(\le x\le5\)
Vậ MinC = 2 khi và chỉ khi 3 \(\le x\le5\)
c) \(C=\left|x^2+4\right|+3\)
Ta thấy \(x^2+4\ge0\) với mọi x
nên \(\left|x^2+4\right|+3=x^2+4+3=x^2+7\)\(\ge\) 7
Dấu " =" xảy ra khi x = 0
MinC = 7 khi và chỉ khi x = 0
a: Đặt A=0
=>-2/3x=5/9
hay x=-5/6
b: Đặt B(x)=0
=>(x-2/5)(x+2/5)=0
=>x=2/5 hoặc x=-2/5
c: Đặt C(X)=0
\(\Leftrightarrow x^3\cdot\dfrac{1}{2}=-\dfrac{4}{27}\)
\(\Leftrightarrow x^3=-\dfrac{8}{27}\)
hay x=-2/3
a: \(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)
Dấu '=' xảy ra khi x=-1 và y=1/3
b: \(\left(2x-1\right)^2+3>=3\)
Do đó: D<=5/3
Dấu '=' xảy ra khi x=1/2
a/ Với mọi x ta có :
\(\left|x-2\right|\ge0\)
\(\Leftrightarrow-\left|x-2\right|\le0\)
\(\Leftrightarrow10-\left|x-2\right|\le10\)
\(\Leftrightarrow A\le10\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
Vậy....
b/ Với mọi x ta có :
\(-3x^2\le0\)
\(\Leftrightarrow-3x^2+2014\le2014\)
\(\Leftrightarrow B\le2014\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy....
c/ Với mọi x ta có :
\(x^2\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+5\ge5\\x^2+1\ge1\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x^2+5}{x^2+1}\le5\)
\(\Leftrightarrow C\le5\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy...
d/ Với mọi x ta có :
\(\left|x-2\right|\ge0\)
\(\Leftrightarrow\left|x-2\right|+3\ge3\)
\(\Leftrightarrow\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)
\(\Leftrightarrow D\le\dfrac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
Vậy...