Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(y=x^2+2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\)
\(=\left(x+\dfrac{5}{2}\right)^2-\dfrac{41}{4}\ge-\dfrac{41}{4}\forall x\)
Dấu '=' xảy ra khi x=-5/2
2: \(y=2\left(x^2-2x+\dfrac{5}{2}\right)\)
\(=2\left(x^2-2x+1+\dfrac{3}{2}\right)\)
\(=2\left(x-1\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=1
3: \(y=x^2-4x+4-3=\left(x-2\right)^2-3\ge-3\forall x\)
Dấu '=' xảy ra khi x=2
4: \(2x^2-8x+3\)
\(=2\left(x^2-4x+\dfrac{3}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{5}{2}\right)\)
\(=2\left(x-2\right)^2-5\ge-5\forall x\)
Dấu '=' xảy ra khi x=2
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
Trả lời:
a, \(\left(2x-5\right)^3=\left(2x\right)^3-3.\left(2x\right)^2.5+3.2x.5^2-5^3=8x^3-60x^2+150x-125\)
b, \(\left(2x+3\right)\left(4x^2-6x+9\right)=\left(2x+3\right)\left[\left(2x\right)^2-2x.3+3^2\right]=\left(2x\right)^3+3^3=8x^3+9\)
c, \(\left(\frac{1}{2}x+1\right)^3=\left(\frac{1}{2}x\right)^3+3\left(\frac{1}{2}x\right)^21+3\cdot\frac{1}{2}x.1^2+1^3=\frac{1}{8}x^3+\frac{3}{4}x^2+\frac{3}{2}x+1\)
d, \(\left(x-\frac{2}{3}y\right)\left(x^2+\frac{2}{3}xy+\frac{4}{9}y^2\right)=x^3-\left(\frac{2}{3}y\right)^3=x^3-\frac{8}{27}y^3\)
d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
Đăng từng bài thôi nha bạn
Bài 1 : Năm nay mới lên lớp 8 -_-
Bài 2 :
\(a)\)
* Câu A :
\(A=x^2+4x-7\)
\(A=\left(x^2+4x+4\right)-11\)
\(A=\left(x+2\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2\) ( ở đây nhiều bài quá nên mình làm tắt cho nhanh, bạn nhớ trình bày rõ ra nhé )
Vậy GTNN của \(A\) là \(-11\) khi \(x=-2\)
* Câu B :
\(B=2x^2-3x+5\)
\(2B=4x^2-6x+10\)
\(2B=\left(4x^2-6x+1\right)+9\)
\(2B=\left(2x-1\right)^2+9\ge9\)
\(B=\frac{\left(2x-1\right)^2+9}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(B\) là \(\frac{9}{2}\) khi \(x=\frac{1}{2}\)
* Câu C :
\(C=x^4-3x^2+1\)
\(C=\left(x^4-3x^2+\frac{9}{4}\right)-\frac{5}{4}\)
\(C=\left(x^2-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\)
Vậy GTNN của \(C\) là \(-\frac{5}{4}\) khi \(x=\sqrt{\frac{3}{2}}\) hoặc \(x=-\sqrt{\frac{3}{2}}\)
Chúc bạn học tốt ~
1)
\(y=x^2+5x-4\)
\(=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\left(\frac{25}{4}+4\right)\)
\(=\left(x+\frac{5}{2}\right)^2-10,25\)
\(Min_y=-10,25\Leftrightarrow x=-\frac{5}{2}\)
2) \(y=2x^2-6x+5\)
\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+\frac{1}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2+\frac{1}{2}\)
\(Min_y=\frac{1}{2}\Leftrightarrow x=\frac{3}{2}\)