Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, vì (x-1)^2 >/ 0 với mọi x
(y-1)^2 >/ 0 với mọi y
=>(x-1)^2+(y-1)^2 >/ 0 với mọi x,y
=>(x-1)^2+(y-1)^2+3 >/ 3
Do đó Amax=3
Dấu "=" xảy ra<=>(x-1)^2=0<=>x=1
(y-1)^2 =0<=>y=1
Bài 1:
a) \(A=\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)
\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy \(A_{min}=-1\Leftrightarrow x=2\)
b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)
Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)
\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)
Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)
Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)
Ta có: \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)
\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)
\(\Rightarrow\) C không có giá trị lớn nhất
Vậy C không có giá trị lớn nhất
d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)
Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)
\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)
Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)
B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)
\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2
b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)
\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
B2:
a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)
\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2
b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)
\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
a) Ta có : A = - 15 - |7 - x| = -(15 + |7 - x|)
vì \(\left|7-x\right|\ge0\forall x\Rightarrow15+\left|7-x\right|\ge15\Rightarrow-\left(15+\left|7-x\right|\right)\le-15\)
Dấu"=" xảy ra <=> 7 - x = 0
=> x = 7
Vậy GTLN của A là - 15 khi x = 7
b) Ta có : \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0}\)
=> \(\left|x+2,5\right|+\left(y-1\right)^4-6\ge-6\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}}\)
Vậy GTNN của B là - 6 khi \(\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)
a) Vì \(\left|7-x\right|\ge0\forall x\)\(\Rightarrow-15-\left|7-x\right|\le-15\forall x\)
hay \(A\le-15\)
Dấu " = " xảy ra \(\Leftrightarrow7-x=0\)\(\Leftrightarrow x=7\)
Vậy \(maxA=-15\Leftrightarrow x=7\)
b) Vì \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}}\)\(\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0\forall x,y\)
\(\Rightarrow\left|x+2,5\right|+\left|y-1\right|^4-6\ge-6\forall x,y\)
hay \(B\ge-6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)
Vậy \(minB=-6\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)
a, B=2.(x+1)2+17
Vì (x+1)2 >= 0 Với mọi x
<=> 2.(x+1)2 >= 0
<=> 2.(x+1)2 >= 0 +17
<=> 2.(x+1)2 >= 17
Vậy GTNN là 17
b, C ; D tương tự
E= 10 - | x - 8 |
Vì | x-8 | >= 0 Với mọi x
<=> 10 - | x-8 | =< 10-0
<=> 10 - | x-8 | =< 10
Vậy GTLN là 10
a) Ta có: \(A=4x^2-12x+15=\left(2x-3\right)^2+6\)
Vì \(\left(2x-3\right)^2\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow A=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
Vậy Amin = 6 khi và chỉ khi x = 3/2
b) \(B=x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy Bmin = 3/4 khi và chỉ khi x = 1/2