Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x\right)^2-1+2017\)
\(=\left(2x^2-3x\right)^2+2016\ge2016\)
\(\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy \(A_{min}=2016\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Ta có: M= 4x^2 - 4x + 1 + x^2 + 4x + 4
= 5x^2 + 5 >= 5
Vậy MinA=5 đạt được khi x=0
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
= \(4x^2\)+\(20x\)+\(25\)+\(6x^2\)- \(8x\)- \(x^2\)-\(22\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(4\)-\(1\)
=(\(3x\)+\(2\))2-\(1\)
vì (\(3x\)+\(2\))2 >-0
=>.................-\(1\)>-(-1)
(>- là > hoặc =)
=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)
..................................
1/ \(B=\frac{2x^2-5x+4}{x^2-2x+1}=\frac{2x^2-5x+4}{\left(x-1\right)^2}\)
Đặt \(y=x-1\Rightarrow x=y+1\) thay vào B
\(B=\frac{2\left(y+1\right)^2-5\left(y+1\right)+4}{y^2}=\frac{2y^2-y+1}{y^2}=\frac{1}{y^2}-\frac{1}{y}+2=\left(\frac{1}{y}-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Đẳng thức xảy ra khi y = 2 <=> x = 3
Vậy min B = 7/4 khi x = 3
2/ \(C=\frac{x^2-6x+6}{x^2-2x+1}=\frac{x^2-6x+6}{\left(x-1\right)^2}\)
Tới đây bạn làm tương tự 1/
Tuy mk không biết làm nhưng mình sẽ đánh dấu bài này mk không cần bạn k nhưng bạn k trong các câu khác nha.
Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp Trang Nhung giải bài toán này.
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}\)
\(Q=\frac{x^2+2x+1+x^2-2x+1}{\left(x+1\right)^2}\)
\(Q=\frac{\left(x+1\right)^2+\left(x-1\right)^2}{\left(x+1\right)^2}\)
\(Q=\frac{\left(x+1\right)^2}{\left(x+1\right)^2}+\frac{\left(x-1\right)^2}{\left(x+1\right)^2}\)
\(Q=1+\frac{\left(x-1\right)^2}{\left(x+1\right)^2}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow Q\ge1+0=1\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy........
Đặt x2-2x+1=t, ta có:
\(A=\left(t-1\right)\left(t+1\right)=t^2-1=\left(x^2-2x+1\right)^2-1\ge-1\)
Dấu "=" xảy ra khi \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Đặt \(\left(x^2-2x\right)\left(x^2-2x=2\right)=k.\left(k+2\right)=A\)
\(\Rightarrow A=k.\left(k+2\right)=k^2+2k\)
\(\Rightarrow A=k^2+k+k+1-1=k\left(k+1\right)+\left(k+1\right)-1\)
\(\Rightarrow A=\left(k+1\right)^2-1\)
\(\Rightarrow A=\left(x^2-2x+1\right)^2-1\)
\(\Rightarrow A=\left(x^2-x-x+1\right)^2-1=\left[x.\left(x-1\right)-\left(x-1\right)\right]^2-1\)
\(\Rightarrow A=\left(x-1\right)^2-1\ge-1\)
( Dấu "=" xảy ra <=> x=1 )