K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

\(\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}\)

=\(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)

=|3x-1|+|5-3x| ≥ |3x-1+5-3x|

<=> |3x-1|+|5-3x| ≥ |4|

=> Min A =4 khi (3x-1)(5-3x) ≥ 0

ta có bảng

x 3x-1 5-3x tích 1/3 5/3 0 0 - + + - - + + - +

=> x ≤ 1/3 hoặc x ≥ 5/3

vậy .....

27 tháng 6 2018

này gọi là xét dấu đúng hong ạ !

1 tháng 10 2015

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

30 tháng 9 2015

hok giỏi nhưng cx có bài bế tắc chứ bộ đâu fai hok giỏi nhất thiết là cái gì cx biết đâu

1 tháng 10 2015

P = x4.y+ x+ y+ 1 

Ta có: x+ y= (x + y)- 2xy = 10 - 2xy => x+ y= (x+ y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2

=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)+ 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]+ 10.(xy - 2)2 + 45

=> P > 45 

Dấu "=" xảy ra <=> xy = 2 

Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y\(\sqrt{10}\).y + 2 = 0 

\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

vậy  P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\)\(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)

 

\(B=\left|3x-1\right|+\left|5-3x\right|>=\left|3x-1+5-3x\right|=4\)

Dấu '=' xảy ra khi (3x-1)(3x-5)<=0

=>1/3<=x<=5/3

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

6 tháng 7 2016

\(9x^2-6x+2=\left(3x-1\right)^2+1=t\ge1\)

\(Pt\Rightarrow\sqrt{t}+\sqrt{5t-1}=\sqrt{10-t}\)

\(\Leftrightarrow5t-1=10-t+t-2\sqrt{t\left(10t-1\right)}\)

\(\Leftrightarrow2\sqrt{t\left(10t-1\right)}+5t=11\)

\(\Rightarrow VT\ge VP\left(t\ge1\right)\Rightarrow t=1\Rightarrow x=\frac{1}{3}\)

7 tháng 10 2021
a. 6x³-9x²
21 tháng 7 2023

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)

\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(A=\left|1-3x\right|+\left|3x-2\right|\)

\(A=\left|1-3x+3x-2\right|\)

\(A=\left|-1\right|=1\)

Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)

\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

21 tháng 7 2023
24 tháng 10 2023

\(\sqrt{16x}-2\sqrt{36x}+3\sqrt{9x}=2\left(x\ge0\right)\)

\(\Leftrightarrow\sqrt{4^2\cdot x}-2\sqrt{6^2\cdot x}+3\sqrt{3^2x}=2\)

\(\Leftrightarrow4\sqrt{x}-2\cdot6\sqrt{x}+3\cdot3\sqrt{x}=2\)

\(\Leftrightarrow4\sqrt{x}-12\sqrt{x}+9\sqrt{x}=2\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=2^2\)

\(\Leftrightarrow x=4\left(tm\right)\)