Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(1/2^2022)=1/2^2022+1/2^4044+...+1/2^(2022^2021)
=>2^2022*A=1+1/2^2022+...+1/2^(2022^2020)
=>A*(2^2022-1)=1-1/2^(2022^2021)
=>\(A=\dfrac{2^{2022^{2021}}-1}{2^{2022}-1}\)
\(M=\left|x-2021\right|+\left|x-2020\right|=\left|2021-x\right|+\left|x-2020\right|\)
Ta có: \(\hept{\begin{cases}\left|2021-x\right|\ge2021-x\\\left|x-2020\right|\ge x-2020\end{cases}}\Rightarrow M\ge2021-x+x-2020=1\)
Dấu '' = '' xảy ra khi: \(\hept{\begin{cases}2021-x\ge0\\x-2020\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2021\\x\ge2020\end{cases}}\Rightarrow2020\le x\le2021\)
Ta có : A = |x - 3| + |4 + x|
= |3 - x| + |4 + x|
\(\ge\)|3 - x + 4 + x| = 7
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3-x\ge0\\4+x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3}\)
Vậy GTNN của A là 7 khi và chỉ khi \(-4\le x\le3\)
\(A=\left|x-3\right|+\left|4+x\right|=\left|3-x\right|+\left|4+x\right|\ge\left|3-x+4+x\right|=7\)
Dấu "=" xảy ra khi và chỉ khi \(\left(3-x\right)\left(4+x\right)\ge0\Rightarrow\left(x-3\right)\left(x+4\right)\le0\)
Suy ra x-3 và x+4 trái dấu,mà x-3<x+4
Suy ra\(x-3\le0\le x+4\Rightarrow-4\le x\le3\)
Vậy MIN A=7 khi và chỉ khi \(-4\le x\le3\)
Ta có:
\(A=\left|x-2020\right|+\left|x-2021\right|\)
\(=\left|x-2020\right|+\left|2021-x\right|\)
\(\ge\left|x-2020+2021-x\right|=\left|1\right|=1\)
Dấu "=" xảy ra khi: \(\left(x-2020\right)\left(2021-x\right)\ge0\)
\(\Rightarrow2020\le x\le2021\)
Vậy Min(A) = 1 khi \(2020\le x\le2021\)
Ta có A = |x - 2020| + |x - 2021|
= |x - 2020| + |2021 - x|
\(\ge\)|x - 2020 + 2021 - x| = |1| = 1
Dấu "=" xảy ra <=> \(\left(x-2020\right)\left(2021-x\right)\ge0\)
Xét các trường hợp
TH1 : \(\hept{\begin{cases}x-2020\ge0\\2021-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2020\\x\le2021\end{cases}}\Rightarrow2020\le x\le2021\)
TH2 : \(\hept{\begin{cases}x-2020\le0\\2021-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2020\\x\ge2021\end{cases}}\left(\text{loại}\right)\)
Vậy Min A = 1 <=> \(2020\le x\le2021\)
) ) x O y I A C B D t K
a) Xét \(\Delta\)OIA và \(\Delta\)OID có:
OAI = OBI (= 90o)
OI: chung
IOA = IOB (OI: phân giác AOB)
\(\Rightarrow\)\(\Delta\) OIA = \(\Delta\)OIB (ch-gn)
b) Xét \(\Delta\)OCB và \(\Delta\)ODA có:
OBC = OAD (= 90o)
OB = OA (\(\Delta\)OIA = \(\Delta\)OID)
COD: chung
\(\Rightarrow\Delta\) OCB = \(\Delta\)ODA (ch-gn)
\(\Rightarrow\)OC = OD (2 cạnh tương ứng)
Xét \(\Delta\)OIC và \(\Delta\)OID có:
OC = OD (cmt)
IOC = IOD (IO: phân giác COD)
IO: chung
\(\Rightarrow\Delta\) OIC = \(\Delta\)OID (c.g.c)
c) Gọi giao điểm của OI và CD là K
Xét \(\Delta\)OKC và \(\Delta\)OKD có:
OC = OD (cmt)
KOC = KOD (OI: phân giác COD)
OK: chung
\(\Rightarrow\Delta\) OKC = \(\Delta\)OKD (c.g.c)
\(\Rightarrow\)OKC = OKD (2 góc tương ứng)
Mà OKC + OKD = 180o
\(\Rightarrow\)OKC = OKD = 180o : 2
\(\Rightarrow\)OKC = OKD = 90o
\(\Rightarrow\)OI \(\perp\)CD
A