Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow x^2-4x+5+\sqrt{x^2-4x+5}-5=m\)
Đặt \(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}=a\ge1\)
\(\Rightarrow a^2+a-5=m\) (1)
Xét phương trình: \(x^2-4x+5=a^2\Leftrightarrow x^2-4x+5-a^2=0\)
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=5-a^2\end{matrix}\right.\)
\(\Rightarrow\) Nếu \(5-a^2>0\Rightarrow1\le a< \sqrt{5}\) thì pt có 2 nghiệm dương
Nếu \(5-a^2\le0\) \(\Leftrightarrow a\ge\sqrt{5}\) thì pt có 1 nghiệm dương
Vậy để pt đã cho có đúng 2 nghiệm dương thì: (1) có đúng 1 nghiệm thỏa mãn \(1\le a< \sqrt{5}\) hoặc có 2 nghiệm pb \(a_1>a_2\ge\sqrt{5}\)
Xét \(f\left(a\right)=a^2+a-5\) với \(a\ge1\)
\(f'\left(a\right)=0\Rightarrow a=-\frac{1}{2}< 1\Rightarrow f\left(a\right)\) đồng biến \(\forall a\ge1\) \(\Rightarrow y=m\) chỉ có thể cắt \(y=f\left(a\right)\) tại nhiều nhất 1 điểm có hoành độ \(a\ge1\)
\(f\left(1\right)=-3\) ; \(f\left(\sqrt{5}\right)=\sqrt{5}\)
\(\Rightarrow\) Để pt có 2 nghiệm pb đều dương thì \(-3\le m< \sqrt{5}\)
Câu 2:
\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) (1)
Ta có: \(mx^2+\left(m+1\right)x+m+1\ge0\)
\(\Leftrightarrow m\left(x^2+x+1\right)\ge-x-1\)
\(\Leftrightarrow m\ge\frac{-x-1}{x^2+x+1}=f\left(x\right)\) (2)
Để mọi nghiệm của (1) là nghiệm của (2) \(\Leftrightarrow\left(2\right)\) đúng với mọi \(x\in\left[1;2\right]\)
\(\Rightarrow m\ge\max\limits_{\left[1;2\right]}f\left(x\right)\)
\(f'\left(x\right)=\frac{-\left(x^2+x+1\right)+\left(2x+1\right)\left(x+1\right)}{\left(x^2+x+1\right)^2}=\frac{x^2+2x}{\left(x^2+x+1\right)^2}>0\) \(\forall x\in\left[1;2\right]\)
\(\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow\max\limits_{\left[1;2\right]}f\left(x\right)=f\left(2\right)=-\frac{3}{7}\)
\(\Rightarrow m\ge-\frac{3}{7}\)
ĐK: x > 0
\(0< x< 1\Leftrightarrow\log_2x< 0\)
Đặt \(t=\log_2x\), pt đã cho trở thành \(t^2-2mt+m+2=0\) (1)
YCBT ↔ pt (1) có hai nghiệm âm phân biệt
\(\Leftrightarrow\begin{cases}\Delta'>0\\S< 0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+3m+2>0\\2m< 0\\m+2>0\end{cases}\) \(\Leftrightarrow-1< m< 0\)
Lời giải:
Ta có \(4^x-2m.2^x+(2m^2+5)=0\)
Coi \(2^x=a\) thì pt chuyển về pt bậc 2:
\(a^2-2ma+(2m^2+5)=0(*)\)
Ta thấy \(\Delta'=m^2-(2m^2+5)=-(m^2+5)<0\), do đó pt $(*)$ vô nghiệm, tức là không tồn tại $a$, kéo theo không tồn tại $x$
Do đó không tồn tại giá trị nào của $m$ thỏa mãn đkđb
\(\Leftrightarrow3^{-\left|x-1\right|}=5m-3\)
Nhận thấy \(x_0-1\) là 1 nghiệm của pt thì \(-x_0+1\) cũng là 1 nghiệm của pt
Nên pt đã cho có nghiệm duy nhất khi và chỉ khi \(x_0-1=-x_0+1\Rightarrow x_0=1\)
\(\Rightarrow3^{-\left|1-1\right|}=5m-3\Leftrightarrow5m-3=1\Rightarrow m=\frac{4}{5}\)
2/ \(2^{4x-2m}=2^{3x}\)
\(\Leftrightarrow4x-2m=3x\Rightarrow x=2m\)
- Với \(m=0\) ko thỏa mãn
- Với \(m\ne0\) đồ thị hàm số cắt \(y=3\) tại duy nhất 1 điểm khi và chỉ khi:
\(\left\{{}\begin{matrix}-m\left(m+2\right)\ge0\\y\left(0\right)=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-2\le m< 0\\2m^2-m-3=0\end{matrix}\right.\)
\(\Leftrightarrow m=-1\)
bài2:
x4-2x2-3=-m
vế trái có x4-2x2-3=0
bảng
x | -∞ -1 0 1 +∞ |
f'x | - 0 + 0 - 0 + |
fx | -4 -3 -4 |
phương trình có 4 nghiệm khi
-4<-m<-3
=> 3<m<4
Lời giải:
Đặt \(2^{|x-1|}=a (a\geq 1)\). PT tương đương với:
\(2a^2+2a+m=0(*)\)
Nếu \((*)\) có nghiệm \(a>1\Rightarrow |x-1|=\log_2a>0\). Từ đây ta có thể thu được $2$ giá trị $x$ (không thỏa mãn)
Do đó để pt ban đầu có nghiệm duy nhất thì $a=1$
Khi đó: \(2a^2+2a+m=0\Leftrightarrow 2+2+m=0\Leftrightarrow m=-4\)
Thử lại thấy thỏa mãn, pt có nghiệm duy nhất \(x=1\)
Vậy \(m=-4\)
<=>\(2^{2\left|x-1\right|+1}+2^{\left|x-1\right|}=-m\)
f(x)=\(2^{2\left|x-1\right|+1}+2^{\left|x-1\right|}\) là hàm chẵn nhận x=1 làm trục đối xứng
f(x) đạt GTNN = 4 ; tại x=1
f(x) là hàm chẵn nhận x=1 làm trục đối xứng
để f(x) =-m có nghiệm duy nhất => -4=m =4 <=> m=4