Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left|x-2017\right|+\left|2018-x\right|\ge\left|x-2017+2018-x\right|=1\)
Vậy \(Min=1\Leftrightarrow2017\le x\le2018\)
b, \(B=\dfrac{x^2+4+8}{x^2+4}=1+\dfrac{8}{x^2+4}\)
Thấy : \(x^2+4\ge4\)
\(\Rightarrow B=1+\dfrac{8}{x^2+4}\le3\)
Vậy \(Max=3\Leftrightarrow x=0\)
\(A=\left(x-1\right)^2+|y+3|+1\)
Ta thấy : \(\left(x-1\right)^2\ge0\)
\(|y+3|\ge0\)
Suy ra \(\left(x-1\right)^2+|y+3|+1\ge1\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
Vậy \(Min_A=1\)khi \(x=1;y=-3\)
\(B=|x^2-1|+\left(x+1\right)^2+y^2\)
Ta dễ dàng nhận thấy :
\(|x^2-1|\ge0\)
\(\left(x+1\right)^2\ge0\)
\(y^2\ge0\)
Cộng vế với vế ta được \(|x^2-1|+\left(x+1\right)^2+y^2\ge0\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2-1=0\\x+1=0\\y=0\end{cases}< =>\hept{\begin{cases}x=\pm1\\x=-1\\y=0\end{cases}< =>\hept{\begin{cases}x=-1\\y=0\end{cases}}}}\)
Vậy \(Min_B=0\)khi \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
Bài giải
Nếu đề là \(F=\frac{1}{\left|x\right|}+2017\) thì làm như sau :
* Tìm giá trị lớn nhất :
\(\Rightarrow\text{ Vì }\frac{1}{\left|x\right|}>0\text{ và F lớn nhất }\Rightarrow\text{ }\frac{1}{\left|x\right|}\text{ lớn nhất }\)
\(\Leftrightarrow\text{ }\left|x\right|\text{ bé nhất }\left(x\ne0\right)\)
\(\Rightarrow\text{ }\left|x\right|\text{ là số nguyên dương nhỏ nhất }\Rightarrow\text{ }\left|x\right|=1\text{ }\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(\Rightarrow\text{ }F=\frac{1}{\left|x\right|}+2017< 1+2017=2018\)
\(\text{Vậy }Max\text{ }F=2018\)
* Gía trị bé nhất không tìm được nha !
Bài giải
Làm nốt trường hợp còn lại bạn Rain nói nha ! Vì đề bạn ghi không rõ mới làm thế này nha ! TH2 : \(F=\frac{1}{\left|x\right|+2017}\)
* Gía trị lớn nhất
\(F=\frac{1}{\left|x\right|+2017}\text{ đạt giá trị lớn nhất khi }\left|x\right|+2017\text{ đạt GTNN }\)
Mà \(\left|x\right|\ge0\text{ }\Rightarrow\text{ }\left|x\right|+2017\ge2017\)
\(\text{ Vậy để }F\text{ lớn nhất thì }\left|x\right|+2017=2017\text{ Dấu " = " xảy ra khi }\left|x\right|=0\text{ }\Rightarrow\text{ }x=0\)
\(\text{Vậy }Max\text{ }F=\frac{1}{2017}\)
* Gía trị nhỏ nhất cũng không tìm được nha bạn !
anh ấy thật đẹp trai