\(B=\left|x+2,8\right|-7,9\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

Ta có: \(|x+2,8|\ge0\)

\(\Rightarrow|x+2,8|-7,9\ge-7,9\)

Dấu ''='' xảy ra khi \(x+2,8=0\)

                              \(\Rightarrow x=-2,8\)

Vậy gtnn của biểu thức B là -7,9 khi x=-2,8

30 tháng 6 2018

a) Ta có: \(\left|x\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow A=\left|x\right|+\frac{6}{13}\ge\frac{6}{13}\)

Dấu "=" xảy ra "=" |x| = 0 <=> x = 0

Vậy Amin = 6/13 khi và chỉ khi x = 0

b) Ta có: \(\left|x+2,8\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow B=\left|x+2,8\right|-7,9=\left|x+2,8\right|+\left(-7,9\right)\ge-7,9\)

Dấu "=" xảy ra <=> |x+2,8| = 0 <=> x + 2,8 = 0 <=> x = -2,8

Vậy Bmin = -7,9 khi và chỉ khi x = -2,8

c) Ta có: \(\left|x+1,5\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow C=\left|x+1,5\right|-5,7=\left|x+1,5\right|+\left(-5,7\right)\ge-5,7\)

Dấu "=" xảy ra <=> |x+1,5| = 0 <=> x + 1,5 = 0 <=> x = -1,5

Vậy Cmin = -5,7 khi và chỉ khi x = -1,5

28 tháng 8 2016

\(B=1,5+\left|2-x\right|\)

Có: \(\left|2-x\right|\ge0\)

\(\Rightarrow1,5+\left|2-x\right|\ge1,5\)

Dấu = xảy ra khi: \(2-x=0\Rightarrow x=2\)

Vậy:  \(Min_A=1,5\)tại \(x=2\)

28 tháng 8 2016

\(C=-\left|x+2\right|\) . Có: \(-\left|x-2\right|\le0\)

Dấu = xảy ra khi: \(x+2=0\Rightarrow x=-2\)

Vậy: \(Max_C=0\) tại \(x=-2\)

10 tháng 6 2017

\(\left|3,4-x\right|\) luôn dương nên để C nhỏ nhất thì \(\left|3,4-x\right|\) nhỏ nhất

\(\Rightarrow\left|3,4-x\right|=0\)

\(\Rightarrow3,4-x=0\)

\(\Rightarrow x=3,4\)

Khi \(x=3,4\) thì giá trị của C là 1,7 + 0 = 1,7

10 tháng 6 2017

Để D nhỏ nhất thì \(\left|x+2,8\right|=3,5\)

Ta có: \(\left|x+2,8\right|=3,5\)

\(\Rightarrow\left\{{}\begin{matrix}x+2,8=3,5\\x+2,8=-3,5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0,7\\x=-6,3\end{matrix}\right.\)

Vậy khi x = 0,7 hoặc x = -6,3 thì D = 3,5 - 3,5 = 0

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

9 tháng 7 2016
  • Vì \(\left|x-\frac{1}{2}\right|\ge0\)

=>\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\ge\frac{3}{8}\)

A đạt giá trị nhỏ nhất <=> \(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|=\frac{3}{8}\)

=>\(\left|x-\frac{1}{2}\right|=0\)

=>\(x-\frac{1}{2}=0\)

=>x=\(\frac{1}{2}\)

Vậy A đạt giá trị nhỏ nhất là \(\frac{3}{8}\) khi x=\(\frac{1}{2}\)

  • Vì \(\left|2x+4\right|\ge0\)

=>\(B=\frac{6}{5}-\left|2x+4\right|\le\frac{6}{5}\)

B đạt giá trị lớn nhất <=> \(B=\frac{6}{5}-\left|2x+4\right|=\frac{6}{5}\)

<=>|2x+4|=0

<=>2x+4=0

<=>2x=-4

<=>x=-2

Vậy B đạt giá trị lớn nhất là \(\frac{6}{5}\) khi x=-2