Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
(Tưởng khó lắm chứ...?)
Nếu \(a,b\) là nghiệm pt (mình không dùng x một, x hai vì đánh không được) thì \(ab=-8\).
Như vậy, thực chất là mình tìm \(maxQ=\left(a^2-1\right)\left(b^2-4\right)\) với ĐK \(ab=-8\).
Nói khác đi, tìm \(maxQ=\left(a^2-1\right)\left(\frac{64}{a^2}-4\right)=4\left[17-\left(a^2+\frac{16}{a^2}\right)\right]\).
Bất đẳng thức AM-GM cho ta \(a^2+\frac{16}{a^2}\ge8\) và đẳng thức xảy ra khi và chỉ khi \(a=2\) hoặc \(a=-2\)..
Khi \(a=2\) thì \(b=-4\). Khi đó \(m+2=-a-b=2\) hay \(m=0\).
Khi \(a=-2\) thì \(b=4\). Khi đó \(m+2=-a-b=-2\) hay \(m=-4\).
Vậy \(m=0\) và \(m=-4\) thoả đề.
- Phương trình: \(x^2-2\left(m+1\right)x+m^2+4=0\)có 2 nghiệm \(x_1;x_2\)thì
\(\Delta^'=b^'^2-ac=\left(m+1\right)^2-\left(m^2+4\right)=2m-3\ge0\Rightarrow m\ge\frac{3}{2}\)(1)
- Và\(x_1;x_2\)thỏa mãn:
- \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\left(m+1\right)\\x_1x_2=\frac{c}{a}=m^2+4\end{cases}}\)
- Do đó \(P=x_1+x_2-x_1x_2=2\left(m+1\right)-\left(m^2+4\right)=-m^2+2m-2\)
\(=-\left(m^2-2m+1\right)-1=-\left(m-1\right)^2-1\)(với \(m\ge\frac{3}{2}\))
- Ta lại có với \(m\ge\frac{3}{2}\)tức là \(m-1\ge\frac{1}{2}>0\)thì hàm số \(P\left(m\right)=-\left(m-1\right)^2-1\)là nghịch biến trong khoảng [\(\frac{3}{2};+\infty\)); tức là P lớn nhất khi m nhỏ nhất. Vậy khi m nhỏ nhất bằng \(\frac{3}{2}\)thì phương trình đã cho có 2 nghiệm \(x_1=x_2=\frac{5}{2}\)và P đạt giá trị lớn nhất = \(-\frac{5}{4}\).
\(\Delta'=\left(m-1\right)^2-m^2-4\)
\(\Delta'=m^2-2m-m^2+1-4\)
\(\Delta'=-2m-3\)
Để pt có 2 nghiệm phân biệt \(\Rightarrow\)\(\Delta'\ge0\)\(\Rightarrow-2m-3\ge0\)
\(\Leftrightarrow m\le-\frac{3}{2}\)
Theo vi-ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+4\end{cases}}\)
\(P=x_1+x_2-x_1x_2\)
\(P=2m+1-m^2-4\)
\(P=-m^2+2m-3\)
\(P=\left(1-m\right)^2-2\)
\(\left(1-m\right)^2-2\ge-2\Rightarrow P\ge-2\)
MIN \(P=-2\)khi\(m=1\)
MAX \(P=\frac{-1}{2}\)khi \(m=\frac{5}{4}\)
\(M=\left(2x-1\right)^2-3\left|2x-1\right|+2=\left|2x-1\right|^2-3\left|2x-1\right|+2\)
Đặt: | 2x -1 | = t ( t >=0)
=> \(M=t^2-3t+2=\left(t^2-2.t.\frac{3}{2}+\frac{9}{4}\right)-\frac{9}{4}+2\)
\(=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra <=> \(t=\frac{3}{2}\)( tm)
khi đó: \(\left|2x-1\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}2x-1=\frac{3}{2}\\2x-1=-\frac{3}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{1}{4}\end{cases}}\)
Vậy min M = -1/4 <=> x =3/4 hoặc x =- 1/4
ĐK: \(x\ne1;\text{ }-1\)
\(S=\frac{3-4m^2}{1-m^4}\Leftrightarrow\left(1-m^4\right)S=3-4m^2\Leftrightarrow S.m^4-4m^2+3-S=0\)
Đặt \(m^2=x\text{ }\left(x\ge0\right)\)
Pt thành \(S.x^2-4x+3-S=0\text{ (*)}\)
\(+S=0\text{ thì }pt\text{ thành }0-4x+3-0=0\Leftrightarrow x=\frac{3}{4}\)
\(+\text{Xét }S\ne0;\text{ }\left(\text{*}\right)\text{ là một }pt\text{ bậc 2 ẩn }x;\text{ tham số }S;\text{ để tồn tại }x\text{ thì }\Delta'\ge0\)\(\text{Mà }\Delta'=2^2-S\left(3-S\right)=S^2-3S+4=\left(S-\frac{3}{2}\right)^2+\frac{7}{4}>0\text{ với mọi }S\ne0\)
Nên \(\left(\text{*}\right)\text{ có 2 nghiệm phân biệt }x_1;\text{ }x_2\text{ với mọi }S.\)
\(\text{Theo định lí Vi-et: }x_1+x_2=\frac{4}{S};\text{ }x_1.x_2=\frac{3-S}{S}\)
Để tồn tại m thì (*) phải có nghiệm \(x\ge0\). Xét 2 trường hợp:
+(*) có 2 nghiệm x1; x2 không âm
\(\text{Do }x_1;\text{ }x_2\ge0\text{ nên }x_1+x_2\ge0\text{ và }x_1.x_2\ge0\)
\(\Rightarrow\frac{4}{S}\ge0\) và \(\frac{3-S}{S}\ge0\)\(\Rightarrow0<\)\(S\le3\)
+(*) có 1 nghiệm âm và 1 nghiệm không âm.
\(\Rightarrow\frac{3-S}{S}\le0\Leftrightarrow S<0\text{ hoặc }S\ge3\)
Đến đây ta thấy (*) luôn có 1 nghiệm dương với mọi S thuộc R. Điều đó có nghĩa là, với số S lớn cỡ nào đi nữa luôn tìm được \(x>0\), hay nói cách khác, luôn tìm được m thỏa \(\frac{3-4m^2}{1-m^4}=S\).
Vậy không tồn tại GTLN của S.
(Lưu ý: bấm máy tính ta cũng được kết quả như vậy.
Thử bấm tính S với m = 1,000000001, ta sẽ thấy S có giá trị rất lớn.
Nếu yêu cầu tìm GTNN thì bấm m = 0,99999999 thấy S có giá trị âm rất nhỏ.)
Tập giá trị của S là R, S không có GTLN; GTNN.