\(A=\sqrt{\frac{7x-1}{2x^2+3}}+\sqrt{3x-2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

a) Ta có BH//CF mà CF _|_ AB nên BH _|_ AB

Xét \(\Delta ABH\)vuông tại B có BE là đường cao nên \(AB^2=AH\cdot AE\Rightarrow AC^2=AH\cdot AE\)(vì AE=AC)

b) Vẽ DK _|_ AB khi đó DK là đường trung bình của \(\Delta FBC\)

\(\Rightarrow DK=\frac{1}{2}CF\)

tam giác ABD vuông tại A, DK là đường cao nên \(\frac{1}{DK^2}=\frac{1}{DB^2}+\frac{1}{DA^2}\)

Do đó\(\frac{1}{\left(\frac{CF}{2}\right)^2}=\frac{1}{\left(\frac{BC}{2}\right)^2}+\frac{1}{DA^2}\Rightarrow\frac{4}{CF^2}=\frac{4}{BC^2}+\frac{1}{AD^2}\)

\(\Rightarrow\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{4AD^2}\)

23 tháng 8 2020

Điều kiện để biểu thức có nghĩa:

\(\hept{\begin{cases}\frac{7x-1}{2x^2+3}\ge0\\3x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}7x-1\ge0\\3x-2\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}7x\ge1\\3x\ge2\end{cases}}\Rightarrow\hept{\begin{cases}x\ge\frac{1}{7}\\x\ge\frac{2}{3}\end{cases}}\Rightarrow x\ge\frac{2}{3}\)

Vậy \(x\ge\frac{2}{3}\) thì BT A có nghĩa

21 tháng 6 2019

c,  Để BT có nghĩa thì  \(x^2-4x+3\ge0\)

                                    \(\Leftrightarrow x^2-4x+4\ge1\)

                                    \(\Leftrightarrow\left(x-2\right)^2\ge1\)

                                    \(\Leftrightarrow\sqrt{\left(x-2\right)^2}\ge1\)

                                      \(\Leftrightarrow|x-2|\ge1\)

\(\Leftrightarrow x-2\ge1\) và   \(x-2\le-1\)

\(\Leftrightarrow x\ge3;x\le1\)

29 tháng 8 2018

\(\frac{5x-3}{2x}+\sqrt{3x+y}xđ\Leftrightarrow\hept{\begin{cases}2x\ne0\\3x+y\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ge-\frac{y}{3}\end{cases}}}\)

\(\sqrt{3x-1}+\frac{5x}{\sqrt{x+3}}xđ\Leftrightarrow\hept{\begin{cases}3x-1\ge0\\x+3>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{3}\\x>-3\end{cases}\Rightarrow x\ge\frac{1}{3}}\)

25 tháng 2 2022

Với x >= 0 ; x khác  9 

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\frac{-3\sqrt{x}-3}{x-9}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}\)

\(\frac{B}{A}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}:\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{-3}{\sqrt{x}+3}+\frac{1}{2}< 0\)

\(\Leftrightarrow\frac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)

Kết hợp đk vậy 0 =< x < 9 

6 tháng 8 2016

a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\) 

\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{-3}{\sqrt{x}+3}\)

 

 

 

 

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với