K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2019

A B C D O M

Gọi O là giao điểm của AC và BD 

TH1: M trùng O

=> AM+MB+MC+AD=AC+BD(1)

TH2: M không trùng O

Áp dụng BĐT tam giác, ta có:

\(\hept{\begin{cases}AM+MC>AC\\MB+MD>BD\end{cases}\Rightarrow AM+MB+MC+MD>AC+BD}\)(2)

Từ (1)và (2) => để tổng khoảng cách từ M đến cách đỉnh trong tứ giác ABCD nhỏ nhất => M trùng O 

L=MA+MB+MC+MD

L=(MA+MD)+(MB+MC)

(MA+MD) nhỏ nhất khi AMD trên đường thẳng

(MB+MC) nhỏ nhất khi BMC trên đường thẳng

=> Lmin đạt được khi M là giao hai đường chéo AD và BC

31 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1) b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c) =(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc) c)Đặt x-y=a;y-z=b;z-x=c a+b+c=x-y-z+z-x=o đưa về như bài b d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y) =x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
9 tháng 4 2016

a) giao điểm của các đường phân giác 

b) M≡T (điểm T được gọi là điểm Toricenli của tam giác ABC).

hoặc  M≡B

9 tháng 4 2016

nếu bạn nói M trùng B thì phải nói rõ điều kiện đặt cho 3 cạnh của tam giác

26 tháng 7 2019

Áp dụng BĐT Bunhiacopxki cho 2 bộ số \(\left(\sqrt{ax},\sqrt{by},\sqrt{cz}\right)\) và \(\left(\sqrt{\frac{a}{x}};\sqrt{\frac{b}{y}};\sqrt{\frac{c}{z}}\right)\)có:

\(\left(ax+by+cz\right)\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\left(\sqrt{ax}.\sqrt{\frac{a}{x}}+\sqrt{by}.\sqrt{\frac{b}{y}}+\sqrt{cz}.\sqrt{\frac{c}{z}}\right)^2\)

Suy ra \(\left(ax+by+cz\right)\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\left(a+b+c\right)^2\)(1)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z\), tức là M cách đều BC,CA,AB hay M là tâm nội tiếp \(\Delta\)ABC

Ta có \(2S_{ABC}=2S_{BMC}+2S_{CMA}+2S_{AMB}=ax+by+cz\) (2)

Từ (1) và (2) suy ra \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge\frac{\left(a+b+c\right)^2}{2S_{ABC}}=const\)

Vậy Min \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{\left(a+b+c\right)^2}{2S_{ABC}}\). Đạt được khi M là tâm nội tiếp \(\Delta\)ABC.