Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+2016\)
\(=x\left(x^2+5x+4\right)\left(x^2+5x+6\right)+2016\)
\(=x\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)+2016\)
\(=x\left[\left(x^2+5x+5\right)-1\right]+2016\)
\(=x\left(x^2+5x+5\right)-x+2016\)
Đáp số : Dư \(-x+2016\)
Gọi đa thức cần tìm là f(x); g(x),r(x), q(x) lần lượt là thương và số dư của f(x) cho x-2,x-3, x2-5x+6
Ta có f(x)= (x2-5x+6).2x+q(x)
Vì bậc của số dư luôn nhỏ hơn bậc của số bị chia mà x2-5x+6 có bậc là 2=> q(x) là đa thức bậc nhất => q(x)=ax+b
=> f(x)= (x2-5x+6).2x+ax+b=(x-2)(x-3).2x+ax+b
Ta cũng có
• f(x) = (x-2).g(x)+2
•f(x)= (x-3).r(x)+7
Ta xét các giá trị của x
+ x=2=> f(x)=2=> 2a+b=2(1)
+ x=3=> f(x) =7=> 3a+b= 7(2)
Lấy (2)-(1) ta có a=5=> b=-12
=> f(x)=(x2-5x+6).2x+5x-12
= 2x3-10x2+12x+5x-12= 2x3-10x2+17x-12
các bạn làm cách nào cũng đc
ko bắt buộc phải dùng định lí bezout
Bài 1 : Đa thức chia là bậc 2 do đó đa thức dư nhiều nhất sẽ là bậc 1 .
Ta có : \(P\left(x\right)=Q\left(x\right).\left(x^2-5x+6\right)+ax+b\)
Theo bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}P\left(2\right)=2a+b=-2\\P\left(3\right)=3a+b=-3\end{matrix}\right.\)
Giải hệ phương trình ta tìm được :
\(\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\)
Vậy số dư trong phéo chia là \(-x\)
Bài 2 : Mình suy nghĩ sau !
Chúc bạn học tốt
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\) và dư \(ax+b\)
=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)
Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5
=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1
Giả sử đa thức bị chia là m (x)
Gia sử thương là : q( x )
Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1
Suy ra , ta có : m( x ) =( x2 - 5x + 6 ) q( x ) = ax + b
Đi tìm X
x2 - 5x + 6 = 0
x2 - 2x - 3x + 6 = 0
x( x - 2) - 3(x - 2) = 0
( x - 2)( x - 3) = 0
Vậy x = 2 hoặc x = 3
Ta có giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :
f( 2 ) = 5
-> 2a + b = 5 ( 1)
Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó ta được :
f( 3 ) = 7
-> 3a + b = 7 ( 2)
Từ ( 1 và 2) suy ra : a = 2 ; b = 1
Suy ra : f( x ) = ( x2 - 5x + 6 ) Thay số q( x ) = 2x + 1
Vậy dư là 2x +1