Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:
\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)
\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)
Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)
\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)
Suy ra \(b^2+1\inƯ\left(10\right)=....\)
Tự làm nốt nhá, trở thành bài lớp 6 r` :)
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
Lời giải:
Ta có: \(11y^2=4140-x^2\leq 4040\) do $x^2\geq 0$
\(\Rightarrow y^2\leq \frac{4040}{11}\)
\(y\leq \sqrt{\frac{4040}{11}}< 20\). Mà $y$ là số nguyên dương nên $y\in \left\{1;2;3;...;19\right\}$
Thử từng giá trị của $y$ trên vào tìm $x$ ta thu được các cặp $x,y$ thỏa mãn là:
$(x,y)=(64,2); (57, 9); (53,11); (31,17); (24,18); (13,19)$
Lời giải:
Ta có: \(11y^2=4140-x^2\leq 4040\) do $x^2\geq 0$
\(\Rightarrow y^2\leq \frac{4040}{11}\)
\(y\leq \sqrt{\frac{4040}{11}}< 20\). Mà $y$ là số nguyên dương nên $y\in \left\{1;2;3;...;19\right\}$
Thử từng giá trị của $y$ trên vào tìm $x$ ta thu được các cặp $x,y$ thỏa mãn là:
$(x,y)=(64,2); (57, 9); (53,11); (31,17); (24,18); (13,19)$