Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Mà \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}>0\)
\(\Rightarrow x+2015=0\Rightarrow x=-2015\)
\(S=\left\{-2015\right\}\)
a, Làm
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)
<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)
<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
<=> x+2021=0
<=> x=-2021
Kl:......................
b, Làmmmmm
\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)
<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)
<=> x=2006
Kl:..............
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
d, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+10=0\) (Vì \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\) ≠ 0)
\(\Leftrightarrow x=-10\)
Vậy x = -10 là nghiệm của phương trình.
d) x+1/2019 + x+3/2017 = x+5/2015 + x+7/2013
<=> x+1/2019 + x+3/2017 - x+5/2015 - x+7/2013 =0
<=> ( x+1/2019 + 1) + ( x+3/2017 + 1) - ( x+5/2015 + 1) - ( x+7/2013 +1) = 0
<=> ( x+1+2019/2019) +(x+3+2017/2017) - ( x+5+2015/2015) - ( x+7+2013/2013) =0
<=> x+2020/2019 + x+2020/2017 - x+2020/2015 - x+2020/2013 =0
<=> (x+2020)× ( 1/2019 + 1/2017 - 1/2015 - 1/2013) =0
Mà 1/2019 + 1/2017 - 1/2015 - 1/2013 khác 0
=> x+2020 =0
=> x = -2020
\(\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-1\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
HOẶC\(x-1=0\Leftrightarrow x=1\)(NHẬN)
HOẶC\(x-3=0\Leftrightarrow x=3\)(NHẬN)
VẬY: tập ngiệm của pt là S={1;3}
\(PT\Leftrightarrow\left(\frac{x-5}{2020}-1\right)+\left(\frac{x-6}{2019}-1\right)-\left(\frac{x-7}{2018}-1\right)-\left(\frac{x-8}{2017}-1\right)=0\)
\(\Leftrightarrow\left(x-2025\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
Dễ thấy \(\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)< 0\)
\(\Rightarrow x=2025=5^2.3^4\)
Vậy các ước nguyên tố của nghieemh pt là 3,5