ta co:2x^2-2xy=5x-y-19 | |||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Ta có: \(\left(2x+1\right)\left(y^2-5\right)=12\)
\(\Leftrightarrow\hept{\begin{cases}2x+1\\y^2-5\end{cases}}\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm4;\pm6;\pm3;\pm12\right\}\)
Lập bảng:
\(2x+1\) | \(-1\) | \(-2\) | \(-3\) | \(-4\) | \(-6\) | \(-12\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(12\) |
\(y^2-5\) | \(-12\) | \(-6\) | \(-4\) | \(-3\) | \(-2\) | \(-1\) | \(12\) | \(6\) | \(4\) | \(3\) | \(2\) | \(1\) |
\(x\) | \(-1\) | Loại | \(-2\) | Loại | \(1\) | |||||||
\(y\) | Loại | Loại | Loại | Loại | Loại | Loại | Loại | Loại | \(3\) | Loại | Loại | Loại |
Vậy x =1 và y = 3
bài 1:
a, Ta có: 2-4x chia hết cho x-1
x-1 chia hết cho x-1 => 4(x-1) chia hết cho x - 1 =>4x-4 chia hết cho x-1
=> 2-4x+(4x-4) chia hết cho x-1
=> -2 chia hết cho x-1
=>x-1 thuộc Ư(-2) = {1;-1;2;-2}
=>x thuộc {2;0;3;-1}
b, x2-x+1 chia hết cho x-1
=>X(x-1)+1 chia hết cho x-1
=>1 chia hết cho x-1
=>x-1 thuộc Ư(1)={1;-1}
=>x thuộc {2;0}
2,
a, 5x + 7y = 5x - 5y + 12y = 5(x - y) + 12y
Vì x - y chia hết cho 3 => 5(x - y) chia hết cho 3
12y chia hết cho 3
=> 5(x - y) + 12y chia hết cho 3 hay 5x + 7y chia hết cho 3
b, 39x - 33y + 1092 = 39x - 39y + 6y + 1092 = 39(x - y) + 6y + 1092
Vì x - y chia hết cho 3 => 39(x - y) chia hết cho 3
6y chia hết cho 3
1092 chia hết cho 3
=> 39(x - y) + 6y + 1092 chia hết cho 3 hay 39x - 33y + 1092 chia hết cho 3
3,
5xy-5x+y=5
5x(y-1)+(y-1)=5-1
(5x+1)(y-1)=4
Ta có bảng:
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 0 | -2/5 (loại) | 1/5 (loại) | -3/5 (loại) | 3/5 (loại) | -1 |
y | 5 | -3 | 3 | -1 | 2 | 0 |
Vậy các cặp (x;y) là (0;5);(-1;0)
Xin lỗi, mk chỉ biết bài 3:
Nhân cả 2 vế với 3 ta có:
3S = 1.2.3 +2.3.3 +3.4.3 +......+ 30.31.3
3S= 1.2.3 +2.3.( 4 - 1 ) +3.4. ( 5 - 2 ) +....+ 30.31. ( 32 - 29 )
3S= 1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 +.....+ 30.31.32 - 30.31.29
3S= 30.31.32
S = 30.31.32 : 3
S = 9920
Vậy S = 9920
x2 + xy + x + y = 2
x . x + x . y + x + y = 2
x . ( x + y ) + x + y = 2
x . ( x + y ) + ( x + y ) . 1 = 2
( x + y ) . ( x + 1 ) = 2
=> x + 1 thuoc U(2)
=> x + 1 thuoc { 1 ; 2 }
Lap bang :
x + 1 | 1 | 2 |
x + y | 2 | 1 |
x | 0 | 1 |
y | 2 | 1 |
Vay ( x ; y ) la : ( 0 ; 2 ) ; ( 1 ; 1 )
P/s tham khao nha