\(2y^2-4y\)

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

a) = 2y(y-2)

<=> y > 2

b) y> -1/3

    y> 3/4

<=> kh nghiem y> 3/4

26 tháng 9 2016

a) Để biểu thức đã cho dương ta cần :

\(2y^2-4y>0\)

\(\Rightarrow2.y.y-4y>0\)

\(\Rightarrow y.\left(2y-4\right)>0\)

\(\Rightarrow\hept{\begin{cases}y>0\\2y-4>0\rightarrow y>2\end{cases}\Rightarrow y>2}\)

hoặc

\(\Rightarrow\hept{\begin{cases}y< 0\\2y-4< 0\rightarrow y< 2\end{cases}}\Rightarrow y< 0\)

Vậy y>2 hoặc y<0

25 tháng 9 2018

a) Ta có:

\(2y^2-4y\)

\(=2y\left(y-2\right)\left(y\ne2;0\right)\)

Để \(2y^2-4y\) luôn nhận giá trị dương

\(\Rightarrow\) 2y và y -2 cùng dấu

\(\Rightarrow\left\{{}\begin{matrix}2y< 0\\y-2< 0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}2y>0\\y-2>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y< 0\\y< 2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}y>0\\y>2\end{matrix}\right.\)

\(\Rightarrow y< 0\) hoặc \(y>2\) thì biểu thức luôn nhận giá trị dương

b) \(5\left(3y+1\right)\left(4y-3\right)\left(y\ne-\dfrac{1}{3};\dfrac{3}{4}\right)\)

Vì 5 là số nguyên dương

=> Để biểu thức luôn nhận giá trị dương thì 3y + 1 và 4y - 3 phải cùng dấu

\(\Rightarrow\left\{{}\begin{matrix}3y+1>0\\4y-3>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}3y+1< 0\\4y-3< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3y>-1\\4y>3\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}3y< -1\\4y< 3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y>-\dfrac{1}{3}\\y>\dfrac{4}{3}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}y< -\dfrac{1}{3}\\y< \dfrac{3}{4}\end{matrix}\right.\)

\(\Rightarrow y>\dfrac{4}{3}\) hoặc \(y< -\dfrac{1}{3}\) thì biểu thức luôn nhận giá trị dương

4 tháng 7 2018

\(2x\left(x-3y\right)-4y\left(x+2\right)-2\left(x^2-3y-4xy\right)\)

\(=2x^2-6xy-4xy+8y-2x^2-6y-8xy\)

\(=2x^2-10xy+8y-2x^2-14xy\)

\(=10xy+8y-14xy\)

\(=-4xy+8y\)

\(=-4.\left(\frac{-2}{3}.\frac{3}{4}\right)+8.\frac{3}{4}\)

\(=-4.\frac{-1}{2}+6\)

\(=2+6=8\)

4 tháng 7 2018

\(2x^2-6xy-4xy-8y-2x^2+6y+8xy\)

\(=-2y-2xy\)

thay \(x=\frac{-2}{3};y=\frac{3}{4}\) vào biểu thức ta có

\(-2.\frac{3}{4}-2.\frac{-2}{3}\frac{3}{4}=\frac{-3}{2}+1=\frac{-3+2}{2}=\frac{-1}{2}\)

nếu có sai bn thông cảm

22 tháng 12 2018

a) Dễ thấy \(x^2\)luôn dương vậy để A dương thì \(4x\ge0\)

\(\Leftrightarrow x\ge0\)

b) \(B=\left(x-3\right)\left(x+7\right)\)dương khi :

TH1: \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}\Rightarrow}x>3}\)

TH2: \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}\Rightarrow}x< -7}\)

c) Tương tự câu b)

19 tháng 6 2017

a) Ta có ; \(x^2\ge0\forall x\in R\)

Nên A dương khi 4x \(\ge0\forall x\in R\) 

=> \(x\ge0\)

Vậy A dương khi \(x\ge0\)

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)