\(ab+1⋮c\);\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=4\) (*)

Mà \(a+b+c=abc\Rightarrow\frac{a+b+c}{abc}=1\)

Từ (*) \(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\Rightarrowđpcm\)

27 tháng 6 2017

Ta cần chứng minh bất đẳng thức phụ: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)} \)

\(\left(a+b\right)^2\ge4ab\)

\(a^2+2ab+b^2-4ab\ge0\)

\(\left(a-b\right)^2\ge0\)(luôn đúng)

Xét c+1 = a+b+c+c

Áp dụng bất đẳng thức trên, ta có:

\(\frac{ab}{c+1}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(\frac{ca}{b+1}\le\frac{ca}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

Cộng vế theo vế, ta có: 

\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{ab}{b+c}+\frac{ab}{c+a}+\frac{bc}{c+a}+\frac{bc}{a+b}+\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{ab+ca}{b+c}+\frac{ab+bc}{c+a}+\frac{bc+ca}{a+b}\right)\)

\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{a\left(b+c\right)}{b+c}+\frac{b\left(a+c\right)}{c+a}+\frac{c\left(b+a\right)}{a+b}\right)\)

\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(a+b+c\right)\)

\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{1}{4}\)

=> Điều phải chứng minh

15 tháng 8 2020

ta có với x,y>0 thì \(\left(x+y\right)^2\ge4xy\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(*) dấu "=" xảy ra khi x=y

áp dụng bđt (*) và do a+b+c=1 nên ta có

\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)+\left(c+b\right)}\le\frac{ab}{4}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)

tương tự ta có \(\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right);\frac{ca}{b+1}\le\frac{ca}{4}\left(\frac{1}{b+a}+\frac{1}{b+c}\right)\)

\(\Rightarrow\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{ab+bc}{c+a}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

\(\Rightarrow\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{c+a}{b+1}\le\frac{1}{4}\)

dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

1 tháng 12 2019

Áp dụng : x + y + z = 0 suy ra x3 + y3 + z3 = 3xyz

1/a + 1/2b + 1/3c = 0 = >... rồi biến đổi nhé

10 tháng 2 2021

có ở trong câu hỏi tương tự nhé

\(S=13\left(\frac{a}{18}+\frac{c}{24}\right)+13\left(\frac{b}{24}+\frac{c}{48}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{2}{ab}\right)+\left(\frac{a}{18}+\frac{c}{24}+\frac{2}{ac}\right)+\left(\frac{b}{8}+\frac{c}{16}+\frac{2}{bc}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{c}{12}+\frac{8}{abc}\right)\)Cô si các ngoặc là được nhé 

17 tháng 8 2019

Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).

Do đó đặt  \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:

Cho \(y^2+5x=24\), tìm max:

\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)

\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)

\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)

Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)

Và dễ dàng chứng minh \(ab+bc+ca\le3\)

Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).

Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)

Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.

Khi đó P = 3. Vậy...

25 tháng 12 2017

Đề bài cho a,b,c,d khác 1 phải không?

Vì ac –a-c =b2-2b nên ac–a-c +1=b2-2b+1 hay (a-1).(c-1) =(b-1)2

suy ra: (a-1)/(b-1) =(b-1)/(c-1).  (1)

Tương tự ta có (b-1).(d-1) =(c-1)2 suy ra: (b-1)/(c-1) =(c-1)/(d-1)  (2)

Từ (1) và (2) suy ra: (a-1)/(b-1) = (c-1)/(d-1) = (a+c-2)/(b+d-2)=(a-c)/(b-d)

Suy ra : (a+c-2). (b-d) = (b+d-2).(a-c)

Khai triển, chuyển vế và rút gọn được: 2bc+2a+2d= 2ad +2b+2c

Suy ra: ad +b+c= bc+a+d