Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)
\(1,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2x+6}-\frac{x-6}{x\left(2x-6\right)}=\frac{3x-x+6}{x\left(2x-6\right)}=\frac{2x+6}{x\left(2x-6\right)}\)
\(2,\frac{1}{1-x}+\frac{2x}{x^2-1}=\frac{-1\left(x+1\right)+2x}{x^2-1}=\frac{x-1}{x^2-1}=\frac{1}{x+1}\)
\(3,\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
\(4,\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}=\frac{-5}{2}\)
\(5,\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2x\left(x+4\right)}\)
\(6,\frac{12x}{5y^3}.\frac{15y^4}{8x^3}=\frac{9y}{2x^2}\)
a, \(\frac{4x+1}{2}-\frac{3x+2}{3}=\frac{12x+3}{6}-\frac{6x+4}{6}=\frac{12x+3-6x-4}{6}=\frac{6x-1}{6}\)
b, \(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}=\frac{x+3}{\left(x-1\right)\left(x+2\right)}-\frac{1}{x\left(x+1\right)}\)
\(=\frac{x\left(x+3\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{x-1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{x^2+2x+1}{x\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+1}{x\left(x-1\right)}\)
\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
\(=\frac{12x+3}{6}-\frac{6x+4}{6}=\frac{6x-1}{6}\)
tương tự đến hết nha a hay cj gì đps !
\(a,\frac{2x+4}{10}+\frac{2-x}{15}=\frac{\left(2x+4\right).3}{10.3}+\frac{\left(2-x\right).2}{15.2}\)
\(=\frac{6x+12}{30}+\frac{4-2x}{30}=\frac{6x+12+4-2x}{30}=\frac{4x+16}{30}\)
\(=\frac{4.\left(x+4\right)}{30}=\frac{2\left(x+4\right)}{15}\)
\(b,\frac{3x}{10}+\frac{2x-1}{15}+\frac{2-x}{20}=\frac{3x.6}{10.6}+\frac{\left(2x-1\right).4}{15.4}+\frac{\left(2-x\right).3}{20.3}\)
\(=\frac{18x}{60}+\frac{8x-4}{60}+\frac{6-3x}{60}=\frac{18x+8x-4+6-3x}{60}=\frac{23x+2}{60}\)
\(c,\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}=\frac{x+1}{2\left(x-1\right)}+\frac{x^2+3}{2\left(1-x^2\right)}=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x^2-1\right)}\)
\(=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\frac{2x-2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{1}{x+1}\)
Bài 4:
a) \(\frac{2x^2-10xy}{2xy}+\frac{5y-x}{y}\)
\(=\frac{y.\left(2x^2-10xy\right)}{2xy.y}+\frac{2xy.\left(5y-x\right)}{2xy.y}\)
\(=\frac{2x^2y-10xy^2}{2xy^2}+\frac{10xy^2-2x^2y}{2xy^2}\)
\(=\frac{2x^2y-10xy^2+10xy^2-2x^2y}{2xy^2}\)
\(=\frac{0}{2xy^2}\)
\(=0.\)
b) \(\frac{2}{x+y}+\frac{1}{x-y}+\frac{3x}{x^2-y^2}\)
\(=\frac{2}{x+y}+\frac{1}{x-y}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)
\(=\frac{2.\left(x-y\right)}{\left(x-y\right).\left(x+y\right)}+\frac{1.\left(x+y\right)}{\left(x-y\right).\left(x+y\right)}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)
\(=\frac{2x-2y}{\left(x-y\right).\left(x+y\right)}+\frac{x+y}{\left(x-y\right).\left(x+y\right)}+\frac{3x}{\left(x-y\right).\left(x+y\right)}\)
\(=\frac{2x-2y+x+y+3x}{\left(x-y\right).\left(x+y\right)}\)
\(=\frac{6x-y}{\left(x-y\right).\left(x+y\right)}\)
c) \(x+y+\frac{x^2+y^2}{x+y}\)
\(=\frac{x+y}{1}+\frac{x^2+y^2}{x+y}\)
\(=\frac{\left(x+y\right).\left(x+y\right)}{x+y}+\frac{x^2+y^2}{x+y}\)
\(=\frac{\left(x+y\right)^2}{x+y}+\frac{x^2+y^2}{x+y}\)
\(=\frac{x^2+2xy+y^2}{x+y}+\frac{x^2+y^2}{x+y}\)
\(=\frac{x^2+2xy+y^2+x^2+y^2}{x+y}\)
\(=\frac{2x^2+2xy+2y^2}{x+y}.\)
Chúc bạn học tốt!
Bài 1:
a) Ta có: \(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
\(=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2}{x+2y}+\frac{y}{x-2y}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}+\frac{y\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x-4y+xy+2y^2+4}{\left(x-2y\right)\cdot\left(x+2y\right)}\)
b) Ta có: \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{2x-2y}{x^2+xy+y^2}\)
c) Ta có: \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}\)
\(=\frac{xy}{2x-y}+\frac{x^2-1}{2x-y}\)
\(=\frac{x^2+xy-1}{2x-y}\)
d) Ta có: \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}\)
\(=\frac{2\left(x^2-y^2\right)+2y^2}{x}\)
\(=\frac{2x^2-2y^2+2y^2}{x}\)
\(=\frac{2x^2}{x}=2x\)
Bài 2:
a) Ta có: \(\frac{4x+1}{2}-\frac{3x+2}{3}\)
\(=\frac{3\left(4x+1\right)}{6}-\frac{2\left(3x+2\right)}{6}\)
\(=\frac{12x+3-6x-4}{6}\)
\(=\frac{6x-1}{6}\)
b) Ta có: \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)
c) Ta có: \(\frac{x+3}{x^2+1}-\frac{1}{x^2+2}\)
\(=\frac{\left(x+3\right)\left(x^2+2\right)}{\left(x^2+1\right)\left(x^2+2\right)}-\frac{x^2+1}{\left(x^2+2\right)\left(x^2+1\right)}\)
\(=\frac{x^3+2x+3x^2+6-x^2-1}{\left(x^2+1\right)\left(x^2+2\right)}\)
\(=\frac{x^3+2x^2+2x+5}{\left(x^2+1\right)\left(x^2+2\right)}\)
e) Ta có: \(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)
\(=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x}\)
\(=\frac{3\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{2x\left(2x-1\right)}{2x\left(x+1\right)\left(x-1\right)}-\frac{2\cdot2\cdot\left(x+1\right)\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{3x-3+4x^2-2x-4\left(x^2-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{4x^2+x-3-4x^2+4}{2x\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x+1}{2x\left(x+1\right)\left(x-1\right)}=\frac{1}{2x\left(x-1\right)}\)
d) Ta có: \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
\(=\frac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{3x+2-12x+8+10x-8}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{x+2}{\left(3x-2\right)\left(3x+2\right)}\)
f) Ta có: \(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)
\(=\frac{3x\cdot2\cdot\left(x-y\right)}{10\left(x+y\right)\left(x-y\right)}-\frac{x\cdot\left(x+y\right)}{10\left(x-y\right)\left(x+y\right)}\)
\(=\frac{6x^2-6xy-x^2-xy}{10\left(x-y\right)\left(x+y\right)}\)
\(=\frac{5x^2-7xy}{10\left(x-y\right)\left(x+y\right)}\)
ĐKXĐ bạn tự tìm nha : )
k, Ta có : \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}\)
\(=\frac{3x\left(1-2x\right)\left(1+2x\right)}{2x\left(x+4\right)\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2\left(x+4\right)}\)
j, Ta có : \(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}=\frac{x+y}{y-x}:\frac{x\left(x+y\right)}{3\left(x^2-y^2\right)}=\frac{x+y}{y-x}.\frac{3\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\)
\(=\frac{3\left(x-y\right)\left(x+y\right)}{x\left(y-x\right)}=\frac{3\left(x-y\right)\left(x+y\right)}{-x\left(x-y\right)}=\frac{-3\left(x+y\right)}{x}\)
i, Ta có : \(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}=\frac{a\left(a+b\right)}{-\left(a-b\right)}:\frac{a+b}{2\left(a^2-b^2\right)}=\frac{a\left(a+b\right)}{-\left(a-b\right)}.\frac{2\left(a-b\right)\left(a+b\right)}{a+b}\)
\(=\frac{2a\left(a+b\right)\left(a-b\right)}{-\left(a-b\right)}=-2a\left(a+b\right)\)
h, = k,
f, Ta có : \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{-3}{x-6}=\frac{-3\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)\left(x-6\right)}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
\(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x^2+x}\)
b, \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{y^2-xy-xy+x^2}{\left(xy-x^2\right)\left(y^2-xy\right)}=\frac{x^2+y^2}{xy^3-xyxy-xyxy+x^3y}\)Tu rut gon tiep
c, tt
d, cx r
a) \(\frac{1}{x}-\frac{1}{x+1}=\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}\)
\(=\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
b) \(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)
\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
c) \(\frac{9x-3}{4x-1}-\frac{3x}{1-4x}=\frac{9x-3}{4x-1}+\frac{3x}{4x-1}\)
\(=\frac{9x-3+3x}{4x-1}=\frac{6x-3}{4x-1}\)