\(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

\(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right)\)

\(=\) \(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\)

\(=\) \(\dfrac{1}{4}-\dfrac{1}{49}\)

\(=\) \(\dfrac{49}{196}-\dfrac{4}{196}\)

\(=\) \(\dfrac{45}{196}\)

11 tháng 7 2017

Biểu thức ban đầu không thỏa công thức nên không giải như vậy đc => sai.

30 tháng 1 2022

Đặt \(A=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}\)

\(=\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+...+\dfrac{5}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}\)

\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right).\dfrac{1-3-5-7-...-49}{89}\)

\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right).\dfrac{1-3-5-7-...-49}{89}\)

\(=\dfrac{9}{196}.\dfrac{1-3-5-7-...-49}{89}\)

Đặt \(B=1-3-5-7-..-49\)

\(=1-\left(3+5+7+...+49\right)\)

\(=1-\left\{\left(49+3\right).\left[\left(49-3\right):2+1\right]:2\right\}\)

\(=1-624\)

\(=-623\)

\(\Rightarrow\dfrac{9}{196}.\left(\dfrac{-623}{89}\right)=-\dfrac{9}{28}\)

Vậy: \(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}=-\dfrac{9}{28}\)

30 tháng 1 2022

Xét \(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right)\)

=\(\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+...+\dfrac{5}{44.49}\right)\)

=\(\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\)

=\(\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\)

=\(\dfrac{1}{5}.\dfrac{45}{196}\)

=\(\dfrac{9}{196}\)

Xét \(\dfrac{1-3-5-7-..-49}{89}\)

=\(\dfrac{1-\left(3+5+7+...+49\right)}{89}\)

CT tính sl số hạng (số cuối - số đầu ):2+1

số lượng số hạn của dãy 3+5+7+...+49 là (49-3):2+1=24

Áp dụng CT tính tổng số hạng dãy số cách đều Tổng = [ (số đầu + số cuối) x Số lượng số hạng ] : 2

=> tổng = [(3+49).24]:2=624

=>\(\dfrac{1-624}{89}\)

=\(\dfrac{-623}{89}\)

=-7

từ đó ta có \(\dfrac{9}{196}.\left(-7\right)=\dfrac{-9}{28}\)

23 tháng 7 2017

\(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+....+\frac{1}{44.49}\right)\cdot\frac{1-3-5-7-....-49}{89}\)

  \(\text{Đặt }:\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right)\)là \(A\)

            \(\frac{1-3-5-7-...-49}{89}\)là \(B\);ta có : 

\(A=\frac{1}{5}\cdot\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right)\)

\(A=\frac{1}{5}\cdot\left(\frac{1}{4}-\frac{1}{49}\right)=\frac{1}{5}\cdot\frac{45}{196}=\frac{9}{196}\)

\(B=\frac{1-3-5-7-....-49}{89}=\frac{1-\left(3+5+7+...+49\right)}{89}\)

Tổng của \(3+5+7+...+49\)là: 

\(\frac{\left(3+49\right).24}{2}=624\)

\(\Rightarrow\frac{1-624}{89}=\frac{-623}{89}=-7\)

\(\Rightarrow\left(\frac{1}{4.9}+\frac{1}{9.14}+...+\frac{1}{44.49}\right)\cdot\frac{1-3-5-7-...-49}{89}=A.B=\frac{9}{196}\cdot-7=-\frac{9}{28}\)

25 tháng 3 2018

mk ko viết lại đề đâu

=\(\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right)\)\(.\frac{1-\left(3+5+...+49\right)}{89}\)

=\(\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right).\frac{\left(1-\frac{\left(49+3\right).24}{2}\right)}{89}\)

=\(\frac{1}{5}.\frac{45}{196}.\frac{1-\left(\frac{52.24}{2}\right)}{89}\)

=\(\frac{9}{196}.\left(1-\frac{624}{89}\right)=\frac{9}{196}.\left(\frac{-623}{89}\right)\)

=\(\frac{-9}{28}\)

30 tháng 12 2017

ta có

1/5(5/36+5/126+...+5/44*49)1-3-5-7-9-...-49/89

=1/5(1/4-1/9+1/9-1/14+...+1/44-1/49)-623/89

=1/5*-7(1/4-1/49)

=-7/5*45/196

=-9/128

31 tháng 12 2017

bạn ơi 9/28 chứ không phải 9/128 đâu

28 tháng 3 2017

=\(\dfrac{1}{5}\).(\(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+....+\dfrac{5}{44.49}\)).\(\dfrac{1-\left(3+5+7+...+49\right)}{89}\)

=\(\dfrac{1}{5}.\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\).\(\dfrac{1-624}{89}\)

=\(\dfrac{1}{5}.\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\).(-7)

=\(\dfrac{1}{5}\).\(\dfrac{45}{196}\).(-7)=\(\dfrac{-9}{28}\)

29 tháng 3 2017

fty

Ta có: \(A=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+\dfrac{5}{14\cdot19}+...+\dfrac{5}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{49-4}{4\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{1}{5}\cdot\dfrac{45}{196}\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{9}{196}\cdot\dfrac{1-3-5-7-...-49}{89}\)

\(\Leftrightarrow A=\dfrac{9}{196}\cdot\dfrac{-623}{89}=-\dfrac{9}{28}\)

20 tháng 11 2018

\(=\left[\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}\right)+\frac{1}{5}\left(\frac{1}{9}-\frac{1}{14}\right)+\frac{1}{5}\left(\frac{1}{14}-\frac{1}{19}\right)+...+\frac{1}{5}\left(\frac{1}{44}-\frac{1}{49}\right)\right]\cdot\frac{1-\left(3+5+...+49\right)}{89}\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-...+\frac{1}{44}-\frac{1}{49}\right)\cdot\frac{1-\left(52+52+...+52\right)\left\{12\text{ số 52}\right\}}{89}\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\cdot\frac{1-624}{89}\)

\(=\frac{9}{196}\cdot-7=\frac{9}{28}\)

2 tháng 10 2020

b) \(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right)\frac{2-\left(1+3+5+7+..+49\right)}{12}\)

\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\frac{2-\left(12.50+25\right)}{89}=-\frac{5.9.7.89}{5.4.7.7.89}=\frac{-9}{28}\)