\(1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}.\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2017

Bài 1:
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(\Rightarrow2A=2+\frac{3}{2^2}+\frac{4}{2^3}+....+\frac{100}{2^{99}}\)

\(\Rightarrow2A-A=\left(2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{100}{2^{99}}\right)-\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\right)\)

\(\Rightarrow A=\left(2-1\right)+\frac{3}{2^2}+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{100}{2^{99}}-\frac{99}{2^{99}}\right)-\frac{100}{2^{100}}\)

\(\Rightarrow A=1+\frac{3}{2^2}+\left(\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)

Bài 2:
Giải:
Ta có: \(2n-3⋮n+1\)

\(\Rightarrow\left(2n+2\right)-5⋮n+1\)

\(\Rightarrow2\left(n+1\right)-5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

Vậy ...

2 tháng 1 2016

a, Dat A =\(\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...-\frac{1}{3^{198}}+\frac{1}{3^{199}}\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...-\frac{1}{3^{199}}+\frac{1}{3^{200}}\)

\(\Rightarrow\frac{1}{3}A+A=\left(\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...-\frac{1}{3^{199}}+\frac{1}{3^{200}}\right)+\left(\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...-\frac{1}{3^{198}}+\frac{1}{3^{199}}\right)\)

\(\Rightarrow\frac{4}{3}A=\frac{1}{3}+\frac{1}{3^{200}}\)

\(\Rightarrow A=\frac{\frac{1}{3}+\frac{1}{3^{200}}}{\frac{4}{3}}\)

chung minh tuong tu cau b va c