Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+3x^4+4\)
\(=x^8+4x^4+4-x^4\)
\(=\left(x^4-2\right)^2-x^4\)
\(=\left(x^4-x^2-2\right)\left(x^4-x^2-2x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+1\right)\left(x^2-1\right)\left(x^2+2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2-2\right)\left(x^2+1\right)\left(x^2+2\right)\)
\(x^8y^8+x^4y^4+1=\left[\left(x^4y^4\right)^2+2x^4y^4+1\right]-x^4y^4=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2\right)^2+2x^2y^2+1-x^2y^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2+1\right)^2-\left(xy\right)^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\)
Phân tích đa thức thành nhân tử
x3+3x2y−9xy2+5y2
x8y8+x4y4+1
\(2x^4+3x^3-7x^2-6x+8\)
\(=2x^4+5x^3-2x^2-8x-2x^3-5x^2+2x+8\)
\(=x\left(2x^3+5x^2-2x-8\right)-\left(2x^3+5x^2-2x-8\right)\)
\(=\left(x-1\right)\left(2x^3+5x^2-2x-8\right)\)
\(=\left(x-1\right)\left(2x^3+x^2-4x+4x^2+2x-8\right)\)
\(=\left(x-1\right)\left[x\left(2x^2+x-4\right)+2\left(2x^2+x-4\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(2x^2+x-4\right)\)
a) x4 + 1
= (x2)2 + 2x2 + 1 - 2x2
= (x2 +1)2 - 2x2
\(=\left(x^2+1\right)^2-\left(\sqrt{2}\right)^2x^2\) \(=\left(x^2+1+\sqrt{2}x\right).\left(x^2+1-\sqrt{2}x\right)\)
a. Giống bạn CÔNG CHÚA ÔRI
b. \(x^4+2\)
\(=\left(x^2\right)^2+2x^2\cdot\sqrt{2}+\left(\sqrt{2}\right)^2-2x^2\cdot\sqrt{2}\)
\(=\left(x^2+\sqrt{2}\right)^2-2x^2\cdot\sqrt{2}\)
\(=\left(x^2+\sqrt{2}\right)^2-\left(\sqrt{2}x\cdot\sqrt[4]{2}\right)^2\)
\(=\left(x^2+\sqrt{2}-\sqrt{2}x\cdot\sqrt[4]{2}\right)\left(x^2+\sqrt{2}+\sqrt{2}x\cdot\sqrt[4]{2}\right)\)
\(x^4+3x^2-4\)
\(=x^4+4x^2-x^2-4\)
\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x^2-1\right)\)
\(=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)
Chúc bạn học tốt.
\(x^8+3x^4+1\)
\(=\left(x^4\right)^2+2x^4.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)
\(=\left(x^4+\frac{3}{2}\right)^2-\left(\sqrt{\frac{5}{4}}\right)^2\)
\(=\left(x^4+\frac{3}{2}-\sqrt{\frac{5}{4}}\right)\left(x^4+\frac{3}{2}+\sqrt{\frac{5}{4}}\right)\)
Nhận lời thách đố
\(=x^8+\frac{6}{2}x^4+1\)
\(=x^8+\frac{3+\sqrt{5}+3-\sqrt{5}}{2}x^4+\frac{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}\)
\(=x^8+\frac{x^4.\left(3+\sqrt{5}\right)}{2}+\frac{x^4\left(3-\sqrt{5}\right)}{2}+\left(\frac{3+\sqrt{5}}{2}\right)\left(\frac{3-\sqrt{5}}{2}\right)\)
\(=x^4\left(x^4+\frac{3+\sqrt{5}}{2}\right)+\frac{3-\sqrt{5}}{2}\left(x^4+\frac{3+\sqrt{5}}{2}\right)\)
\(=\left(x^4+\frac{3-\sqrt{5}}{2}\right)\left(x^4+\frac{3+\sqrt{5}}{2}\right)\)
Nếu thấy đúng nhớ tk nha