Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b là TBC của a+c <=> \(b=\frac{a+c}{2}\)\(\Leftrightarrow2b=a+c\)
Ta có: \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\Leftrightarrow\frac{1}{c}=\frac{1}{2}.\left(\frac{b+d}{bd}\right)\Leftrightarrow\frac{1}{c}=\frac{b+d}{2bd}\Leftrightarrow c\left(b+d\right)=2bd\)
\(\Leftrightarrow bc+cd=2bd\)
Mà 2b=a+c
=>bc+cd=(a+c).d
=>bc+cd=ad+cd
=>bc=ad (cùng bớt đi cd)
=>a/b=c/d (đpcm)
Ta có b là TBC của a và c =>2b=a+c
+) 1 :c = 1:2(1:b+2:d)=>1:c=>(d+2b):(2bd)
=>2bd=c(d+2b)
Thay 2b = a + c, ta có :
(a + c)d = c(d + a + c) => ad + cd = cd + ac +c^2
=>ad=ac+c^2=>ad=c(a+c)=>ad=cb=>a:b=c:d(đpcm)
\(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab\).
\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(b+a\right)}=\frac{a}{b}\)
Ta có :
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)
\(\frac{a}{b}=\frac{a}{c}.\frac{c}{b}=\left(\frac{a}{c}\right)^2\)
Mà \(\frac{a^2+c^2}{c^2+b^2}=\left(\frac{a}{c}\right)^2=\frac{a}{b}\). Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
a) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\)\(=\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}\)\(=\frac{2x-2+3y-6+z-4}{4-9+4}\)
\(=\frac{\left(2x+3y-z\right)-\left(2+6+4\right)}{-1}\)\(=\frac{50-12}{-1}\)=--38
=> x-1/2=-38=>x=-77
y=-112
z=-312
y-2/3=42=>y=128
z