Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F=x2+2xy+y2-x-y-12
= (x + y)^2 - (x + y) - 12
= (x + y)(x + y - 1) - 12
đặt x + y = t
F = t(t - 1) - 12
= t^2 - t - 12
= (t - 4)(t + 3)
G=(x2-3x-1)2-12(x2-3x-1)+27
đăth x^2 - 3x - 1 = t
G = t^2 - 12t + 27
= (t - 3)(t - 9)
có t = x^2 - 3x - 1
thay vào
Câu F ( kiểm tra lại đề )
Câu G . Đặt x^2 -3x-1=t
t^2 -12t+27 ( thực hiện pp tách)
\(\left(6x-1\right)^2-\left(3x+2\right)\)
\(=36x^2-12x+1-3x-2\)
\(=36x^2-15x-1\)
bn ktra lại đề nhé
hk tốt
\(Dat:a^2+a+1=b\Rightarrow....=a\left(a+1\right)-12=\left(a+4\right)\left(a-3\right)\)
=
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\) (1)
Đặt x2 + x +1 = t
Ta có : \(t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12\)
\(=t\left(t-3\right)+4\left(t-3\right)=\left(t-3\right)\left(t+4\right)\)
Thay vào (1), ta được : \(\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
b) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\) (2)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt x2 + 7x + 11 = y
Ta có : \(\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)
Thay vào (2), ta được : \(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(2x^2y^3-\frac{x}{4}-4y^6\)
đây là pt bậc 2 của y^3 , ta đặt y^3=z ta được
\(-\left(4z^2+\frac{2.2xz}{2}+\frac{x^2}{4}\right)+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left(2z+\frac{x}{2}\right)^2+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left\{\left(2x+\frac{x}{2}\right)^2-\left(\frac{x^2}{4}-\frac{x}{4}\right)\right\}\)
\(-\left\{\left(2x+\frac{x}{2}+\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\left(2x+\frac{x}{2}-\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\right\}\)
\(x^2+2xy+y^2-x-y-12\)
\(=\left(x^2+2xy+y^2\right)-\left(x+y\right)-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
Đặt \(t=x+y\) thì ta có:
\(t^2-t-12=t^2-4t+3t-12\)
\(=t\left(t-4\right)+3\left(t-4\right)=\left(t+3\right)\left(t-4\right)\)
\(=\left(x+y+3\right)\left(x+y-4\right)\)
mình ko biết ai ra đề đặt ẩn nhưng bài này cần j đặt ẩn đâu nhỉ :v nhìn cái ra ngay mà :V
\(Dat:x^2+x=a\Rightarrow....=a^2-2a-15=\left(a-1\right)^2-4^2=\left(a+3\right)\left(a-7\right)\)
\(=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
\(Dat:x+y=a\Rightarrow....=a^2-a-12=\left(a+3\right)\left(a-4\right)=\left(x+y+3\right)\left(x+y-4\right)\)
a) A= \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
Đặt \(x^2+x=a\) .
Khi đó : \(A=a^2-2a-15=a^2-5a+3a-15\)\(=a\left(a-5\right)+3\left(a-5\right)=\left(a+3\right)\left(a-5\right)\)
Mà \(a=x^2+x\) nên \(A=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
b) B = \(x^2+2xy+y^2-x-y-12\) \(=\left(x+y\right)^2-\left(x+y\right)-12\)
Đặt x+y = z.
Khi đó : \(B=z^2-z-12=z^2-4z+3z-12=z\left(z-4\right)+3\left(z-4\right)\)\(=\left(z+3\right)\left(z-4\right)\)
Mà z = x+y nên B = (x+y+3)(x+y-4)
Đề sai nhé .Sửu lại
\(x^2-4x^2y^2+4+4x\)
\(=\left(x^2+4x+4\right)-4x^2y^2\)
\(=\left(x+2\right)^2-\left(2xy\right)^2\)
\(=\left(x+2+2xy\right)\left(x+2-2xy\right)\)