\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(x+y)^3 - 3xy(x+y) + z^3 - 3xyz = 0

(x+y+z) ( (x+y)^2 +z^2 -z(x+y) -3xy) =0

(x+y+z) ( x^2+ 2xy+y^2 +z^2- zx-zy-3xy)=0

(x+y+z) ( x^2+y^2+z^2 -zx-zy -xy)=0

Suy ra x+y+z =0 

x+y = -z

y+z = -x

x+z = -y

B = -16 + (-3) +2038 = 2019

7 tháng 2 2020

Ta có: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\left(x,y,z\ne0\right)\)

+) x + y + z = 0 \(\Rightarrow B=\frac{-16z}{z}+\frac{-3x}{x}-\frac{-2038y}{y}\)

\(=-16-3+2038=2019\)

+) x = y = z \(\Rightarrow B=\frac{16.2z}{z}+\frac{3.2x}{x}-\frac{2038.2y}{y}\)

\(=32+6-4076=-4038\)

=-2016 đúng ko?

20 tháng 1 2017

Đề chưa chuẩn: tuy nhiên đánh vào -2016 => đáp án đúng:

Vì bản chất như sau:

thỏa ĐK ban đầu x^3+y^3+z^3=3xzy

Từ HĐT=>

\(\orbr{\begin{cases}x+y+z=0\left(1\right)\\x^2+y^2+z^2-xy-yz-xz=0\left(2\right)\end{cases}}\)

=>(1)&(2) đều có cặp nghiệm x=y=z=0 khi đó P không xác định

do vậy đề thiếu điều kiện x,y,z không đồng thời =0:(*)

Nếu thêm đk (*) giải tiếp

(2) vô nghiệm 

do vậy khi đó chỉ có nghiệm duy nhất của (1) 

x+y=-z

x+z=-y

z+y=-x

Thay vào biểu thwucs  P=-2016