K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2015

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\frac{a+b+c}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\left(a+b+c=0\right)\)

=> điều phải cm

NV
2 tháng 8 2020

a.

\(\frac{x^2}{4}+x+3=\frac{x^2}{4}+x+1+2=\left(\frac{x}{2}+1\right)^2+2>0;\forall x\)

b.

\(A=-3x^2+2x-5=-3\left(x^2-2.\frac{1}{3}x+\frac{1}{9}\right)-\frac{14}{3}=-3\left(x-\frac{1}{3}\right)^2-\frac{14}{3}\le-\frac{14}{3}\)

\(A_{max}=-\frac{14}{3}\) khi \(x=\frac{1}{3}\)

c.

Đề thiếu (để ý 2 số hạng cuối)

\(A=x^4-2x^3+x^2+3x^2-6x+3-1\)

\(=\left(x^2-x\right)^2+3\left(x-1\right)^2-1\ge-1\)

\(A_{min}=-1\) khi \(x=1\)

d.

\(27x^2-\frac{9}{2}x+\frac{3}{16}=3\left(9x^2-\frac{3}{2}x+\frac{1}{16}\right)=3\left(3x-\frac{1}{4}\right)^2\)

e.

\(=\left[\left(b+c\right)+a\right]^2+\left[\left(b+c\right)-a\right]^2+\left[a-\left(b-c\right)\right]^2+\left[a+\left(b-c\right)\right]^2\)

\(=2\left(b+c\right)^2+2a^2+2a^2+2\left(b-c\right)^2\)

\(=4a^2+2b^2+4bc+2c^2+2b^2-4bc+2c^2\)

\(=4\left(a^2+b^2+c^2\right)\)

f.

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+b^2d^2+2ac.bd\right)+\left(a^2d^2+b^2c^2-2ad.bc\right)\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

1)a) (A + B)2 = ?b) (A + B)3 = ?c) A2 - B2 = ?Áp dụng ba hằng đẳng thức trên, hãy phân tích đa thức dưới đây thành nhân tử9x3 + 135x2y + 135xy2 + 5y3 = ?2) a) Cho A = 15x2y3z2 - 20x2yz2 + 10xy3z                B = 5xyzKhông đặt phép chia hãy cho biết A có chia hết cho B không?b) Cho C = 13ab2 + abc + 32a            D = 7abKhông đặt phép chia hãy cho biết C có chia hết cho D không?3) Cho \(\Delta ABC\)có AB = AC. M,...
Đọc tiếp

1)

a) (A + B)2 = ?

b) (A + B)3 = ?

c) A2 - B2 = ?

Áp dụng ba hằng đẳng thức trên, hãy phân tích đa thức dưới đây thành nhân tử

9x3 + 135x2y + 135xy2 + 5y3 = ?

2) a) Cho A = 15x2y3z2 - 20x2yz2 + 10xy3z

                B = 5xyz

Không đặt phép chia hãy cho biết A có chia hết cho B không?

b) Cho C = 13ab2 + abc + 32a

            D = 7ab

Không đặt phép chia hãy cho biết C có chia hết cho D không?

3) Cho \(\Delta ABC\)có AB = AC. M, N, P lầm lượt là trung điểm của AB, BC, AC. Hỏi MP là đường gì của\(\Delta ABC\)? và AB = 3cm, tính BC, AC (biết BC là cạnh huyền của\(\Delta ABC\))

(ba câu trên rất dễ, ai làm đúng cả 3 câu sẽ được 3 tick, 2 câu thì 2 tick, 1 câu thì một tick, nếu ai trả lời ngoài phạm vi mik sẽ tick sai)

3
31 tháng 10 2019

\(\left(A+B\right)^2=A^2+2AB+B^2\)

\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)

\(A^2-B^2=\left(A-B\right)\left(A+B\right)\)

31 tháng 10 2019

2

a

\(15x^2y^3z^2-20x^2yz^2+10xy^3z\)

\(=5xyz\left(3xy^2z-4xz+2y^2\right)⋮5xyz\)

b

\(13ab^2+abc+32a=a\left(13b^2+bc+32\right)\) 

TH1:\(13b^2+bc+32=7b\cdot P\left(x\right)\) thì A chia hết cho B

TH2:\(13b^2+bc+32=7b\cdot Q\left(x\right)+r\left(r>0\right)\) thì A không chia hết cho B

Bài 2: 

a: \(A=1999\cdot2001\)

\(=\left(2000-1\right)\left(2000+1\right)\)

\(=2000^2-1< 2000^2=B\)

Do đó: B lớn hơn

b: \(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1< 2^{16}=D\)

Do đó: D lớn hơn

a) Ta có: \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)

\(=-\left(b^2-2bc+c^2-a^2\right)\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=-\left[\left(b^2-2bc+c^2\right)-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)

\(=-\left[\left(b-c\right)^2-a^2\right]\left(b+c-a\right)\left(b+c+a\right)\)

\(=-\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2 Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là: A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2 ...
Đọc tiếp

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.

Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:

A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2

C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2

Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là:

A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2

Câu 3: Giá trị của biểu thức x + 2x + 1 tại x = -1 là:

A) 4 B) -4 C) 0 D) 2

Câu 4: Kết quả khai triển của hằng đẳng thức (x + y)3 là:

A) x2 + 2xy + y2 B) x3 + 3x2y + 3xy2 + y3

C) (x + y).(x2 – xy + y2) D) x3 - 3x2y + 3xy2 - y3

Câu 5: Kết quả của phép chia (20x4y – 25x2y2 – 5x2y) : 5x2y là:

A) 4x2 – 5y + xy B) 4x2 – 5y – 1

C) 4x6y2 – 5x4y3 – x4y2 D) 4x2 + 5y - xy

Câu 6: Đẳng thức nào sau đây là Sai:

A) (x - y)3 = x3 - 3x2y + 3xy2 - y3 B) x3 – y3 = (x - y)(x2 - xy + y2) C) (x - y)2 = x2 - 2xy + y2 D) (x - 1)(x + 1) = x2 - 1

II. Tự luận (7 điểm)

Câu 1 ( 1 điểm): Rút gọn biểu thức P = (x - y)2 + (x + y)2 – 2.(x + y)(x – y) – 4x2

Câu 2 (3 điểm): Phân tích các đa thức sau thành nhân tử:

a/ x3 – x2y + 3x – 3y

b/ x3 – 2x2 – 4xy2 + x

c/ (x + 2)(x+3)(x+4)(x+5) – 8

Câu 3 (2 điểm): Làm tính chia:(x4 – x3 – 3x2 + x + 2) : (x2 – 1)

Câu 4 (1 điểm): Cho x, y là 2 số khác nhau thoả mãn x2 – y = y2 – x. Tính giá trị của biểu thức A = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y).

help mekhocroi

2
23 tháng 10 2016

Đại số lớp 8

Vậy (x^4 - x^3 - 3x^2 + x + 2) = (x^2 - x - 1)(x^2 - 1) + 1

23 tháng 10 2016

Đại số lớp 8

Đại số lớp 8

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)

\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)

\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)

\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x+10=t\), ta có:

\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)

\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)

17 tháng 4 2018

2)

Xét hiệu:

\(A^2+B^2+C^2+D^2+4-2A-2B-2C-2D\)

\(=\left(A^2-2A+1\right)+\left(B^2-2B+1\right)+\left(C^2-2C+1\right)+\left(D^2-2D+1\right)\)

\(=\left(A-1\right)^2+\left(B-1\right)^2+\left(C-1\right)^2+\left(D-1\right)^2\ge0\)

=> BĐT luôn đúng

Vậy \(A^2+B^2+C^2+D^2+4\ge2\left(A+B+C+D\right)\)

17 tháng 4 2018

1)

Áp dụng BĐT Cauchy cho 2 số không âm, ta có:

\(\dfrac{AB}{C}+\dfrac{BC}{A}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{BC}{A}}=2B\) (1)

\(\dfrac{BC}{A}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{BC}{A}.\dfrac{AC}{B}}=2C\) (2)

\(\dfrac{AB}{C}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{AC}{B}}=2A\) (3)

Từ (1)(2)(3) cộng vế theo vế:

\(2\left(\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\right)\ge2\left(A+B+C\right)\)

\(\Rightarrow\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\ge A+B+C\)

23 tháng 10 2016

3a2c2 + bd + 3abc + acd

= 3ac(ac + b) + d(ac + b)

= (ac + b)(3ac + d)

ab(a + b) - bc(a + c) + abc

= b(a2 + ab - ac - c2 + ac)

= b(a2 + ab - c2)

a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 2abc

= ab2 + ac2 + bc2 + a2b + c(a2 + 2ab + b2)

= c2(a + b) + ab(a + b) + c(a + b)2

= (a + b)(c2 + ab + ac + bc)

= (a + b)[c(b + c) + a(b + c)]

= (a + b)(a + c)(b + c)

bc(b + c) + ac(c - a) - ab(a + b)

= bc(b + c) + ac[(b + c) - (a + b)] - ab(a + b)

= bc(b + c) + ac(b + c) - ac(a + b) - ab(a + b)

= c(b + c)(a + b) - a(a + b)(b + c)

= (a + b)(b + c)(c - a)