K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020

x - 3/90 + x - 2/91 + x - 1/90 = 3

3x = 12557/4095

x= 12557/1365

 
2 tháng 7 2015

a/ x/2 = y/3 = z/5 và x+y+z = -90

áp dụng tính chất của dãy tỉ số bằng nhau, có:

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)

suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)

\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)

\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)

2 tháng 7 2015

a/ x/2 = y/3 = z/5 và x+y+z = -90

áp dụng tính chất của dãy tỉ số bằng nhau, có:

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)

suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)

\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)

\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)

b/ 2x =3y= 5z và x-y+z =-33

=> 2x = 3y, 3y = 5z

=> x/3 = y/2, y/5 = z/3

=> x/15 = y/10 = z/6 và x - y + z = -33

áp dụng tính chất của dãy tỉ số bằng nhau, có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)

suy ra: \(\frac{x}{15}=-3\Rightarrow x=-3\cdot15=-45\)

\(\frac{y}{10}=-3\Rightarrow y=-3\cdot10=-30\)

\(\frac{z}{6}=-3\Rightarrow z=-3\cdot6=-18\)

5 tháng 3 2020

a) x=800/7

b) x=8/33

c) x= 3/10

d) x=80

100 % đúng hết

19 tháng 7 2015

Đặt \(\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow x=2k;y=5k\)

Ta có \(xy=90\Leftrightarrow2k5k=90\Leftrightarrow10k^2=90\Leftrightarrow k^2=9\)

\(\Rightarrow\) k = + 3

Với \(k=3\Leftrightarrow x=2k=2.3=6;y=5k=5.3=15\)

Với \(k=-3\Leftrightarrow x=2k=2.\left(-3\right)=-6;y=5k=5.\left(-3\right)=-15\)

8 tháng 12 2020

Ta có : \(\frac{x}{5}=\frac{y}{8}\Rightarrow\frac{x}{60}=\frac{y}{96}\)(1)

\(\frac{y}{12}=\frac{z}{3}\Rightarrow\frac{y}{96}=\frac{z}{24}\)(2)

Từ 1 ; 2 Suy ra : \(\frac{x}{60}=\frac{y}{96}=\frac{z}{24}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{60}=\frac{y}{96}=\frac{z}{24}=\frac{2y+z-4x}{96.2+24-4.60}=\frac{30}{-26}=-\frac{15}{13}\)

\(x=-\frac{15}{13}.60=-\frac{900}{13}\)

\(y=-\frac{15}{13}.96=-\frac{1440}{13}\)

\(z=-\frac{15}{13}.24=-\frac{360}{13}\)

10 tháng 1 2016

\(2x=3y=5z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

|x - 2y| = 5 => x - 2y = 5 hoặc x - 2y = -5

Áp dụng tính chất DTSBN ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=\frac{5}{-\frac{1}{6}}=-30\)

x/1/2 = -30 => x = -15

y/1/3 = -30 => y = -10

z/1/5 = -30 => z = -6

TH2: Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=-\frac{5}{-\frac{1}{6}}=30\)

x/1/2 = 30 => x = 15

y/1/3 = 30 => y = 10

z/1/5 = 30 => z=  6

 

10 tháng 1 2016

a,

2x=3y=5z

=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)=>\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)

mà l x-2y l =5

=>x-2y=5 hoặc x-2y=-5

nếu x-2y=5

=>x/15=2y/20=x-2y/15-20=5/-5=-1

=>x=-15

=>y=-10

=>z=-6

nếu x-2y=-5

=>x/15=2y/20=x-2y=-5/-5=1

=>x=15

=>y=10

=>z=6

còn b/c bạn đăng từng bài 1 nhé làm thế này lâu lắm  ! đăng câu khác mik làm tiếp cho !

5 tháng 10 2015

\(\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-......-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{5}+\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}=\frac{1}{18}\)

x + 1 = 18

x = 18 - 1 = 17         

4 tháng 9 2021

Ta có: \(\frac{x}{5}\)\(\frac{y}{3}\)và x2-y2=4

=> \(\frac{x^2}{25}\)\(\frac{y^2}{9}\)

Áp dụng t/c DTSBN, ta có:

\(\frac{x^2}{25}\)\(\frac{y^2}{9}\)\(\frac{x^2-y^2}{25-9}\)\(\frac{4}{16}\)\(\frac{1}{4}\)

=> \(\frac{x}{5}\)\(\frac{y}{3}\)\(\frac{1}{4}\)

=> x=\(\frac{5}{4}\); y=\(\frac{3}{4}\)

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...

Ta có : \(\frac{x-3}{90}+\frac{x-2}{91}+\frac{x-1}{92}=3\)

=> \(\frac{x-3}{90}+\frac{x-2}{91}+\frac{x-1}{92}-3=0\)

=> \(\left(\frac{x-3}{90}-1\right)+\left(\frac{x-2}{91}-1\right)+\left(\frac{x-1}{92}-1\right)=0\)

=>. \(\frac{x-93}{90}+\frac{x-93}{91}+\frac{x-93}{92}=0\)

=> \(\left(x-93\right)\left(\frac{1}{90}+\frac{1}{91}+\frac{1}{92}\right)=0\)   (*)

Ta thấy \(\frac{1}{90}>0 ,\frac{ 1}{91}>0 ,\frac{ 1}{92}>0\)

=> \(\frac{1}{90}+\frac{1}{91}+\frac{1}{92}>0\)

Thay vào (*), ta có \(x-93=0\)  =>  \(x=93\) 

           Vậy x=93