Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ x/2 = y/3 = z/5 và x+y+z = -90
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)
\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)
\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)
a/ x/2 = y/3 = z/5 và x+y+z = -90
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
suy ra: \(\frac{x}{2}=-9\Rightarrow x=-9\cdot2=-18\)
\(\frac{y}{3}=-9\Rightarrow y=-9\cdot3=-27\)
\(\frac{z}{5}=-9\Rightarrow z=-9\cdot5=-45\)
b/ 2x =3y= 5z và x-y+z =-33
=> 2x = 3y, 3y = 5z
=> x/3 = y/2, y/5 = z/3
=> x/15 = y/10 = z/6 và x - y + z = -33
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)
suy ra: \(\frac{x}{15}=-3\Rightarrow x=-3\cdot15=-45\)
\(\frac{y}{10}=-3\Rightarrow y=-3\cdot10=-30\)
\(\frac{z}{6}=-3\Rightarrow z=-3\cdot6=-18\)
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
Ta có \(xy=90\Leftrightarrow2k5k=90\Leftrightarrow10k^2=90\Leftrightarrow k^2=9\)
\(\Rightarrow\) k = + 3
Với \(k=3\Leftrightarrow x=2k=2.3=6;y=5k=5.3=15\)
Với \(k=-3\Leftrightarrow x=2k=2.\left(-3\right)=-6;y=5k=5.\left(-3\right)=-15\)
Ta có : \(\frac{x}{5}=\frac{y}{8}\Rightarrow\frac{x}{60}=\frac{y}{96}\)(1)
\(\frac{y}{12}=\frac{z}{3}\Rightarrow\frac{y}{96}=\frac{z}{24}\)(2)
Từ 1 ; 2 Suy ra : \(\frac{x}{60}=\frac{y}{96}=\frac{z}{24}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{60}=\frac{y}{96}=\frac{z}{24}=\frac{2y+z-4x}{96.2+24-4.60}=\frac{30}{-26}=-\frac{15}{13}\)
\(x=-\frac{15}{13}.60=-\frac{900}{13}\)
\(y=-\frac{15}{13}.96=-\frac{1440}{13}\)
\(z=-\frac{15}{13}.24=-\frac{360}{13}\)
\(2x=3y=5z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
|x - 2y| = 5 => x - 2y = 5 hoặc x - 2y = -5
Áp dụng tính chất DTSBN ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=\frac{5}{-\frac{1}{6}}=-30\)
x/1/2 = -30 => x = -15
y/1/3 = -30 => y = -10
z/1/5 = -30 => z = -6
TH2: Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=-\frac{5}{-\frac{1}{6}}=30\)
x/1/2 = 30 => x = 15
y/1/3 = 30 => y = 10
z/1/5 = 30 => z= 6
a,
2x=3y=5z
=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)=>\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)
mà l x-2y l =5
=>x-2y=5 hoặc x-2y=-5
nếu x-2y=5
=>x/15=2y/20=x-2y/15-20=5/-5=-1
=>x=-15
=>y=-10
=>z=-6
nếu x-2y=-5
=>x/15=2y/20=x-2y=-5/-5=1
=>x=15
=>y=10
=>z=6
còn b/c bạn đăng từng bài 1 nhé làm thế này lâu lắm ! đăng câu khác mik làm tiếp cho !
\(\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-......-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
\(\frac{1}{5}+\frac{1}{x+1}=\frac{13}{90}\)
\(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}=\frac{1}{18}\)
x + 1 = 18
x = 18 - 1 = 17
Ta có: \(\frac{x}{5}\)= \(\frac{y}{3}\)và x2-y2=4
=> \(\frac{x^2}{25}\)= \(\frac{y^2}{9}\)
Áp dụng t/c DTSBN, ta có:
\(\frac{x^2}{25}\)= \(\frac{y^2}{9}\)= \(\frac{x^2-y^2}{25-9}\)= \(\frac{4}{16}\)= \(\frac{1}{4}\)
=> \(\frac{x}{5}\)= \(\frac{y}{3}\)= \(\frac{1}{4}\)
=> x=\(\frac{5}{4}\); y=\(\frac{3}{4}\)
a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)
Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Theo đề: \(\left|x-2y\right|=5\)
\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )
\(x-2y=-5\) (nếu \(x< 2y\) )
Vậy có hai trường hợp
TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)
\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)
TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)
\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)
b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)
Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)
\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)
\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)
c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
= \(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
= \(\frac{2x+2y+2z}{x+y+z}\)
= \(\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2
=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x
=> y + z + x + 1 = 3x
=> 1/2 + 1 = 3x
=> 3/2 = 3x
=> x = 3/2 : 3 = 1/2
=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y
=> x + z + y + 2 = 3y
=> 1/2 + 2 = 3y
=> 5/2 = 3y
=> y = 5/2 : 3 = 5/6
=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z
=> x + y + z - 3 = 3z
=> 1/2 - 3 = 3z
=> 3z = -5/2
=> z = -5/2 : 3 = -5/6
Vậy ...
Ta có : \(\frac{x-3}{90}+\frac{x-2}{91}+\frac{x-1}{92}=3\)
=> \(\frac{x-3}{90}+\frac{x-2}{91}+\frac{x-1}{92}-3=0\)
=> \(\left(\frac{x-3}{90}-1\right)+\left(\frac{x-2}{91}-1\right)+\left(\frac{x-1}{92}-1\right)=0\)
=>. \(\frac{x-93}{90}+\frac{x-93}{91}+\frac{x-93}{92}=0\)
=> \(\left(x-93\right)\left(\frac{1}{90}+\frac{1}{91}+\frac{1}{92}\right)=0\) (*)
Ta thấy \(\frac{1}{90}>0 ,\frac{ 1}{91}>0 ,\frac{ 1}{92}>0\)
=> \(\frac{1}{90}+\frac{1}{91}+\frac{1}{92}>0\)
Thay vào (*), ta có \(x-93=0\) => \(x=93\)
Vậy x=93
x - 3/90 + x - 2/91 + x - 1/90 = 3
3x = 12557/4095
x= 12557/1365