Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(x^2+5x< 0\)
Vì \(x^2\ge0\)nên \(5x>-x^2\)
\(\Rightarrow5>-x^2+x\)
Phần b nhìn hơi logic thế thôi nhưng tương tự
biết giải bài 2
x/12=y/14=x.y/12.24=98/288=49/144
=> x/12=49/144=> 49/12
=> y/14=49/144=> 343/72
mới lớp 2 thôi
a) A = \(\left|x-\frac{1}{2}\right|+30\ge0+30=30\)
=> GTNN của A = 30 khi x - 1/2 = 0 => x = 1/2
b) B = \(40-\left|12+x\right|\) \(\le\) 40 - 0 = 40 (Vì \(\left|12+x\right|\ge0\) với mọi x)
=> GTLN của B = 40 khi 12 + x = 0 => x = -12
a)Ta có: |2-3x|>=0(với mọi x)
nên -|2-3x|<=0
nên -|2-3x|+1/2<=1/2 hay C<=1/2
Do đó , GTLN của C là 1/2 khi:
2-3x=0
3x=2-0
x=2/3
Vậy GTLN của C là 1/2 khi x=2/3
b)Ta có: |2x+4|>=0(với mọi x)
nên -3-|2x+4|<=-3 hay D<=-3
Do đó, GTLN của D là -3 khi:
2x+4=0
2x=0-4
x=-4/2
x=-2
Vậy GTLN của D là -3 khi x=-2
a, x/2-2/5=1/10
x/2=1/10+2/5
x/2=1/2
Suy ra x=1
b, 2/3.(x-3/y)=1/21
x-3/y=1/21:2/3
x-3/y=1/14
Vi 7.2=14
Suy ra (x-3).2=1
x-3=1:2
x-3=0,5
x=0,5+3
x=3,5
c, Vi 3/x+y/3=5/6
Suy ra x+3=6
x=3
Vi x=3
Suy ra 3+y=5
Suy ra y=2
Nho ****
a) Để \(\left(-2\frac{2}{5}x+1\right).\left(x-2006\right)\) nhận giá trị dương thì \(-2\frac{2}{5}x+1\text{ và }x-2006\)cùng dấu
=> \(\left[ \begin{array}{l} \left \{ {{-2\frac{2}{5}.x+1<0 } \atop {x-2006<0}} \right. \\\left \{ { { -2\frac{2}{5}.x+1>0 } \atop {x-2006>0}} \right.\end{array} \right.\) =>\(\left[ \begin{array}{l} \left \{ {{-2\frac{2}{5}.x<-1 } \atop {x<2006}} \right. \\\left \{ { { -2\frac{2}{5}.x>-1 } \atop {x>2006}} \right.\end{array} \right.\)=>\(\left[ \begin{array}{l} \left \{ {{x<\frac{5}{2} } \atop {x<2006}} \right. \\\left \{ { { x>\frac{5}{2} } \atop {x>2006}} \right.\end{array} \right.\)\(\Rightarrow\orbr{\begin{cases}x< \frac{-2}{5}\\x>2006\end{cases}}\)
Mình làm lại phần a , mình đánh mã TeX nhưng nó không ra ạ :
Để \(\left(-2\frac{2}{5}x+1\right).\left(x-2006\right)\) nhận giá trị dương thì \(-2\frac{2}{5}x+1\text{ và }x-2006\)cùng dấu
+) \(-2\frac{2}{5}x+1\text{ và }x-2006\)cùng dấu âm
\(\Rightarrow\hept{\begin{cases}-2\frac{2}{5}x+1< 0\\x-2006< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}-2\frac{2}{5}x< -1\\x< 2006\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< \frac{5}{2}\\x< 2006\end{cases}}\)\(\Rightarrow x< \frac{5}{2}\)
+) \(-2\frac{2}{5}x+1\text{ và }x-2006\)cùng dấu dương
\(\Rightarrow\hept{\begin{cases}-2\frac{2}{5}x+1>0\\x-2006>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}-2\frac{2}{5}x>-1\\x>2006\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\frac{5}{2}\\x>2006\end{cases}}\)=> x > 2006