Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)\left(x-5\right)+18\)
\(=x^2-6x+5+18\)
\(=x^2-6x+9+14\)
\(=\left(x-3\right)^2+14\)
\(\Rightarrow A_{min}=14\Leftrightarrow\left(x-3\right)^2=0\)
\(\Rightarrow x-3=0\Leftrightarrow x=3\)
Ta có:
A = (x - 1)(x - 5) + 18 = x2 - 5x - x + 5 + 18 = x2 - 6x + 23 = (x2 - 6x + 9) + 14 = (x - 3)2 + 14
Ta luôn có: (x - 3)2 \(\ge\)0 \(\forall\)x => (x - 3)2 + 14 \(\ge\)14 \(\forall\)x
hay A \(\ge\)14 \(\forall\)x
Dấu "=" xảy ra khi : (x - 3)2 = 0 <=> x - 3 = 0 <=> x = 3
Vậy Amin = 14 tại x = 3
\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)
\(A=4x^2-12x+9-\left(x^2+5x-x-5\right)+2\)
\(A=4x^2-12x+9-x^2-4x+5+2\)
\(A=3x^2-12x+16\)
\(A=3\left(x^2-4x+4\right)\)
\(A=3\left(x-2\right)^2\ge0\)
Dấu bằng xảy ra \(\Leftrightarrow x=2\)
\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)
\(=4x^2-12x+9-\left(x^2+4x-5\right)+2\)
\(=4x^2-12x+9-x^2-4x+5+2\)
\(=3x^2-16x+16\)
\(=3\left(x^2-\frac{16}{3}x+16\right)\)
\(=3\left(x^2-2\cdot\frac{8}{3}\cdot x+\frac{64}{9}+\frac{80}{9}\right)\)
\(=3\left(x-\frac{8}{3}\right)^2+\frac{80}{3}\ge\frac{80}{3}\)
dấu = xảy ra \(\Leftrightarrow x-\frac{8}{3}=0\)
\(\Leftrightarrow x=\frac{8}{3}\)
vậy...
Tìm GTNN
a/ \(A=4x^2+7x+13=\left(4x^2+7x+\frac{49}{16}\right)+\frac{159}{16}=\left(2x+\frac{7}{4}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)
b/ \(B=5-8x+x^2=\left(x^2-8x+16\right)-11=\left(x-4\right)^2-11\ge-11\)
c/ \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Bài 1:
\(P=3x^2+x-1\)
\(=3\left(x^2+\frac{1}{3}x-\frac{1}{3}\right)\)
\(=3\left(x^2+2x.\frac{1}{6}+\frac{1}{36}-\frac{13}{36}\right)\)
\(=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge\frac{-13}{12}\)\(\forall x\)
Dấu '' = '' xảy ra khi: \(\left(x+\frac{1}{6}\right)^2=0\Rightarrow x=\frac{-1}{6}\)
Vậy \(MinP=\frac{-13}{12}\) khi \(x=\frac{-1}{6}\)
Bài 2:
a) Không có điều kiện
b) Nghiệm vô tỉ
Bạn xem lại đề hai phần này nhé.
c) \(\left(x-2\right)^3-x^3+6x^2=14\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2-14=0\)
\(\Rightarrow\left(x^3-x^3\right)+\left(-6x^2+6x^2\right)+12x+\left(-8-14\right)=0\)
\(\Rightarrow12x-22=0\)
\(\Rightarrow x=\frac{11}{6}\)
d) \(8x^2+30x+7=0\)
\(\Rightarrow8x^2+28x+2x+7=0\)
\(\Rightarrow\left(8x^2+28x\right)+\left(2x+7\right)=0\)
\(\Rightarrow4x\left(2x+7\right)+\left(2x+7\right)=0\)
\(\Rightarrow\left(4x+1\right)\left(2x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x+1=0\\2x+7=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-1\\2x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=\frac{-7}{2}\end{cases}}\)
A=x^2+2x+1+x^2-6x+9
A=2x^2-4x+10
A=2(X^2-2x+5)
A=2(x^2-2x+1+4)
A=2((x-1)^2+4)
A=2(x-1)^2+8
Vì (x-1)^2>=0
=>2(x-1)^2>=0
=>A=2(x-1)^2+8>=8 Với mọi giá trị của x
Để A có giá trị nhỏ nhất khi 2(x-1)^2 nhỏ nhất khi đó:
2(x-1)^2=0
=>(x-1)^2=0
=>x-1=0
=>x=1
Vậy Amin=8 Khi x=1
Đúng ko bạn nhỉ?
\(A=x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)
Ta có: \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1\ge1\)
Vậy \(A_{min}=1\)(Dấu "="\(\Leftrightarrow x=3\))
a) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3+3x^2\right)=2\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3-3x^2=2\)
\(\Leftrightarrow3x+1=2\)
\(\Leftrightarrow3x=1\)
\(\Leftrightarrow x=\frac{1}{3}\)
a ) A = 4x2 + 4x + 11
= 4x2 + 4x + 1 + 10
= ( 2x + 1 )2 + 10
Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R
=> ( 2x + 1 )2 + 10 > 10
=> A > 10
=> Giá trị nhỏ nhất của A là 10
Dấu = xảy ra khi : ( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = \(-\frac{1}{2}\)
Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)
b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
= ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x + 3 )
= ( x2 + 5x - 6 ) ( x2 + 5x + 6 )
Đặt t = x2 + 5x
=> B = ( t - 6 ) ( t + 6 )
= t2 - 36
Nhận xét :
t2 > 0 với mọi t thuộc R
=> t2 - 36 > - 36
=> B > - 36
=> Giá trị nhỏ nhất của B là - 36
Dấu = xảy ra khi : t2 = 0
=> t = 0
mà t = x2 + 5x
=> x2 + 5x = 0
=> x ( x + 5 ) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)
c ) C = x2 - 2x + y2 - 4y + 7
= ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 2
= ( x - 1 )2 + ( y - 2 )2 + 2
Nhận xét :
( x - 1 )2 > 0 với mọi x thuộc R
( y - 2 )2 > 0 với mọi y thuộc R
=> ( x - 1 )2 + ( y - 2 )2 > 0
=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2
=> C > 2
=> Giá trị nhỏ nhất của C là 2
Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2
\(A=\left(x-1\right)^2+\left(x-2\right)^2+5.\)
\(A=\left(x^2-2.x.1+1^2\right)+\left(x^2-2.x.2+2^2\right)+5.\)
\(A=\left(x^2-2x+1\right)+\left(x^2-4x+4\right)+5.\)
( suy nghĩ tiếp nha)
Hok tốt
Thanhs!!!!! Uyên Trần