Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{x+1}=\sqrt{2-x}\)
\(\Rightarrow x+1=2-x\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
a) \(ĐKXĐ:-1\le x\le2\)
Bình phương 2 vế ta có:
\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )
Vậy \(x=\frac{1}{2}\)
b) \(ĐKXĐ:x\ge1\)
\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )
Vậy \(x=65\)
c) \(ĐKXĐ:x\ge1\)
\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)
\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )
Vậy \(x=5\)
\(a,\sqrt{2x+5}=\sqrt{1-x}\)
\(\Rightarrow2x+5=1-x\)
\(2x+x=1-5\)
\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên
\(\Leftrightarrow4\left(x+1\right)+\sqrt{2\left(x+1\right)^2+\left(x^2+1\right)}-3\sqrt{x^2+1}=0\)
\(a=x+1;\text{ }b=\sqrt{x^2+1}\)
\(\Rightarrow4a-3b+\sqrt{2a^2+b^2}=0\Leftrightarrow3b-4a=\sqrt{2a^2+b^2}\)
\(\Rightarrow\left(3b-4a\right)^2=2a^2+b^2\Leftrightarrow7\left(\frac{a}{b}\right)^2-12\frac{a}{b}+4=0\)
\(\Leftrightarrow\frac{a}{b}=\frac{6\pm2\sqrt{2}}{7}\)
Khá xấu nhưng vẫn giải được nhé. Bạn kiểm tra lại ở trên rồi tính toán nốt.
Đk : ...
dễ thấy x = 0 không là nghiệm của pt
chia cả hai vế của pt cho \(\sqrt{x}\) ta có :
\(\frac{x+1+\sqrt{x^2-4x+1}}{\sqrt{x}}=3\)
<=> \(\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{x-4+\frac{1}{x}}=3\)
Đặt \(\sqrt{x}+\frac{1}{\sqrt{x}}=t\) => \(x+\frac{1}{x}=t^2-2\)
pt <=> \(t+\sqrt{t^2-6}=3\)
giải tiếp nha
a/ \(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)
= \(\sqrt{\left(2a^2-3\right)^2}-\sqrt{\left(a^2-4\right)^2}\)
= \(|2a^2-3|-|a^2-4|\)
= \(2a^2-3+a^2-4\)
= \(3a^2-7\)
Thay a=\(\sqrt{3}\).Ta có:
\(3.\left(\sqrt{3}\right)^2-7\)
= 3.3-7=2
b/ \(\sqrt{10a^2-12a\sqrt{10}+36}\)
= \(\sqrt{\left(a\sqrt{10}\right)^2-2.a\sqrt{10}.6+6^2}\)
= \(\sqrt{\left(a\sqrt{10}-6\right)^2}\)
= \(|a\sqrt{10}-6|\)
= \(-a\sqrt{10}+6\)
Thay a= \(\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)=\(\frac{3}{\sqrt{10}}\),Ta có:
\(-\frac{3}{\sqrt{10}}.\sqrt{10}+6\)
= -3+6 =3
Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)
PT <=> \(\sqrt{4x^2-14x+16}-\text{ }\sqrt{x^2-4x+5}=x-1\)
Đẽ thấy x = 1 không là n* của pt . Chia cả hai vế cho x - 1
pt <=> \(\sqrt{\frac{4x^2-14x+16}{x^2-2x+1}}-\sqrt{\frac{x^2-4x+5}{x^2-2x+1}}=1\)
<=> \(\sqrt{\frac{4\left(x^2-2x+1\right)+12-6x}{x^2-2x+1}}-\sqrt{\frac{x^2-2x+1+4-2x}{x^2-2x+1}}=1\)
<=> \(\sqrt{4+\frac{12-6x}{x^2-2x+1}}-\sqrt{1+\frac{4-2x}{x^2-2x+1}}=1\)
Đặt \(\sqrt{4+\frac{12-6x}{x^2-2x+1}}=a;\sqrt{1+\frac{4-2x}{x^2-2x+1}}=b\) (a;b > 0 ) ta có hpt
\(\int^{a^2-3b^2=4+\frac{12-6x}{x^2-2x+1}-3-\frac{12-6x}{x^2-2x+1}=1}_{a-b=1}\)
Tự giải