Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{2x+5}=\sqrt{1-x}\)
\(\Rightarrow2x+5=1-x\)
\(2x+x=1-5\)
\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )
Đặt \(\sqrt{x^2+1}=y\ge1\) pt trở thành \(\left(4x-1\right)y=2y^2-2x\)
\(4xy-y=2y^2-2x\Leftrightarrow2y^2-2x-4xy+y=0\)\(\Leftrightarrow y\left(2y+1\right)-2x\left(2y+1\right)=0\Leftrightarrow\left(2y+1\right)\left(y-2x\right)=0\Leftrightarrow y=2x\)(vì y=-1/2(loại))
\(\Leftrightarrow\sqrt{x^2+1}=2x\Leftrightarrow x=\sqrt{\frac{1}{3}}\)
Đặt 2x^2+2x+1=b;căn(x^2+1)=a>1(do x^2 >=0)
>>b-2a^2=2x-1>>2b-4a^2=4x-2
>>2b-4a^2+1=4x-1
>>(2b-4a^2+1)a=b
>>b(2a-1)=a(4a^2-1)=a(2a-1)(2a+1)
>>b=a(2a+1)( Loại 2a-1=0 vì a>1)
>>b-2a^2 =a>>b-2a^2 =a
>>2x-1=căn(x^2+1)>>4x^2-4x+1=x^2+1 với x>=1/2
>>3x^2-4x=0>>x=4/3(Loại x=0 vì x>1/2)
Vậy x=4/3
Trung ĐÂU CƠ HỘI CỦA CẬU KÌA ~~ TÓM LẤY NHANH VÀ LẸ ĐI