Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{2x+5}=\sqrt{1-x}\)
\(\Rightarrow2x+5=1-x\)
\(2x+x=1-5\)
\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên
Đk : ...
dễ thấy x = 0 không là nghiệm của pt
chia cả hai vế của pt cho \(\sqrt{x}\) ta có :
\(\frac{x+1+\sqrt{x^2-4x+1}}{\sqrt{x}}=3\)
<=> \(\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{x-4+\frac{1}{x}}=3\)
Đặt \(\sqrt{x}+\frac{1}{\sqrt{x}}=t\) => \(x+\frac{1}{x}=t^2-2\)
pt <=> \(t+\sqrt{t^2-6}=3\)
giải tiếp nha
Câu 1 :
Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý)
Vậy pt vô nghiệm
Câu 2 :
\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)
Vậy x=-1
Câu 3 :
\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)
Câu 4 :
\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x=15\)
Bài 1: Giải phương trình
a) ĐKXĐ: \(x\ge3\)
Ta có: \(\sqrt{100\cdot\left(x-3\right)}=\sqrt{20}\)
\(\Leftrightarrow\left|100\cdot\left(x-3\right)\right|=\left|20\right|\)
\(\Leftrightarrow100\cdot\left|x-3\right|=20\)
\(\Leftrightarrow\left|x-3\right|=\frac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\frac{1}{5}\\x-3=-\frac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{16}{5}\left(nhận\right)\\x=\frac{14}{5}\left(loại\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{16}{5}\right\}\)
b) Ta có: \(\sqrt{\left(x-3\right)^2}=7\)
\(\Leftrightarrow\left|x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
Vậy: S={10;-4}
c) Ta có: \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5}{2};\frac{-7}{2}\right\}\)
\(\Leftrightarrow4\left(x+1\right)+\sqrt{2\left(x+1\right)^2+\left(x^2+1\right)}-3\sqrt{x^2+1}=0\)
\(a=x+1;\text{ }b=\sqrt{x^2+1}\)
\(\Rightarrow4a-3b+\sqrt{2a^2+b^2}=0\Leftrightarrow3b-4a=\sqrt{2a^2+b^2}\)
\(\Rightarrow\left(3b-4a\right)^2=2a^2+b^2\Leftrightarrow7\left(\frac{a}{b}\right)^2-12\frac{a}{b}+4=0\)
\(\Leftrightarrow\frac{a}{b}=\frac{6\pm2\sqrt{2}}{7}\)
Khá xấu nhưng vẫn giải được nhé. Bạn kiểm tra lại ở trên rồi tính toán nốt.