\(\hept{\begin{cases}\frac{x-1}{2x+1}-\frac{y-2}{y+2}=1\\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2022

đkxđ: \(\hept{\begin{cases}2x+1\ne0\\y+2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne-\frac{1}{2}\\y\ne-2\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{x-1}{2x+1}=a\\\frac{y-2}{y+2}=b\end{cases}}\), hpt đã cho trở thành \(\hept{\begin{cases}a-b=1\\3a-2b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}b=a-1\\3a-2\left(a-1\right)=3\end{cases}}\Leftrightarrow\hept{\begin{cases}b=a-1\\a+2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}b=0\\a=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x-1}{2x+1}=1\\\frac{y-2}{y+2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=2x+1\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)(nhận)

 Vậy hpt đã cho có nghiệm duy nhất là \(\left(-2;2\right)\)

2 tháng 9 2017

Đặt x +\(\frac{1}{x}\) =a, y+\(\frac{1}{y}\)=b

hpt<=>\(\hept{\begin{cases}a^2-2+b^2-2=1\\a+b=3\end{cases}}\) 
đến đây thì dễ rồi , có tổng với tích 
bạn tìm ra a,b rồi tương tự tìm x,y 
14 tháng 11 2017
Chịu
11 tháng 1 2022

google xin tài trợ chương trình

31 tháng 3 2018

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

25 tháng 1 2017

gọi \(\frac{1}{2x-y}\)là \(a\)\(\frac{1}{x-2y}\)là \(b\)

Ta có hệ phương trình: \(\hept{\begin{cases}2a+3b=\frac{1}{2}\\2a-b=\frac{1}{18}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{12}\\b=\frac{1}{9}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{2x-y}=\frac{1}{12}\\\frac{1}{x-2y}=\frac{1}{9}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-y=12\\x-2y=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

\(1,\hept{\begin{cases}x+\frac{3x-y}{x^2+y^2}=3\left(1\right)\\y-\frac{x+3y}{x^2+y^2}=12\left(2\right)\end{cases}}\)

\(\left(1\right)-\left(2\right)\Leftrightarrow x-y+\frac{4x-4y}{x^2+y^2}=-9\)

3 tháng 3 2020

Bn có nhầm đâu ko thế trừ thì đổi dấu thành \(\frac{3x-y}{x^2+y^2}+\frac{x+3y}{x^2+y^2}=\frac{4x+2y}{x^2+y^2}\)

7 tháng 1 2018

a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

7 tháng 1 2018

a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)

b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)