\(\frac{3n-6061}{n-2020}\)có giá trị là 1 số...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

Bài làm:

Ta có: \(A=\frac{3n-6061}{n-2020}=\frac{\left(3n-6060\right)-1}{n-2020}=\frac{3\left(n-2020\right)}{n-2020}-\frac{1}{n-2020}=3-\frac{1}{n-2020}\)

Ta có 3 là 1 số nguyên nên để A là 1 số nguyên

\(\Rightarrow\frac{1}{n-2020}\inℤ\Rightarrow1⋮\left(n-2020\right)\)

\(\Rightarrow n-2020\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{2019;2021\right\}\)

Vậy với n = 2019 hoặc n = 2021 thì A có giá trị là 1 số nguyên

Học tốt!!!!

23 tháng 6 2020

A = 3n - 6061/x - 2020

để A nguyên

=> 3x - 6061 chia hết cho x - 2020

=> 3x - 6060 - 1 chia hết cho x - 2020

=> 1 chia hết cho x - 2020

=> x - 2020 thuộc {-1; 1}

=> x - 2020 thuộc {2019; 2021}

23 tháng 6 2020

Trả lời :

\(A=\frac{3n-6061}{n-2020}\)

\(A=\frac{3\left(n-2020\right)-1}{n-2020}\)

\(A=3-\frac{1}{n-2020}\)

Để A\(\inℤ\)=> \(\frac{1}{n-2020}\inℤ\)

\(\Rightarrow1⋮n-2020\)

\(\Rightarrow\orbr{\begin{cases}n=2021\\n=2019\end{cases}}\)

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

20 tháng 11 2018

bạn đổi số thập phân thành phân số rồi dùng công thức sau

\(\left(\frac{a}{b}\right)^{^{ }n}=\frac{a^n}{b^n}\)

10 tháng 3 2019

Do đề bài không cho đk của n nên không thể giải theo cách thông thường là lập bảng xét ước được!

 ĐK: n khác 6

a) Đặt \(\frac{n+9}{n-6}=k\left(k\inℕ\right)\Rightarrow n=kn-6k-9\)

\(\Leftrightarrow n\left(k-1\right)=6k+9\)

Với k = 1 thì \(0=6+9\) (vô lí)

Với k khác 1 thì chia hai vế cho k - 1 được: \(n=\frac{6k+9}{k-1}\left(k\inℕ\right)\)

b) \(\frac{n+9}{n-6}=\frac{3}{4}\Leftrightarrow n+9=\frac{3}{4}n-\frac{9}{2}\)

Chuyển vế,ta có: \(\frac{1}{4}n=-\frac{27}{2}\Rightarrow n=-54\)

c) \(\frac{n+9}{n-6}=1+\frac{15}{n-6}\).Để p/s tối giản thì \(\frac{15}{n-6}\) tối giản tức là:

\(\Leftrightarrow\left(15;n-6\right)=1\Leftrightarrow n-9⋮1\Leftrightarrow n=k+9\)

Câu c) mmình ko chắc

3 tháng 11 2019

=1/1-1/2+1/2-1/3+1/3-1/4+.........+1/1999-1/2000

=1/1-1/2000

=1999/2000<3/4

3 tháng 11 2019

Bài này hình như sai đề, kết quả khi tình ra dc là 1999/2000 làm sao nhỏ hơn 3/4 dc bạn

29 tháng 4 2018

Bài 1: Rút gọn các phân số sau đến tối giản:

a) \(\frac{49+7.49}{49}=\frac{49\left(1+7\right)}{49}=8\)

b) \(\frac{9.6-9.3}{18}=\frac{9\left(6-3\right)}{18}=\frac{27}{18}=\frac{3}{2}\)

c) \(\frac{17.5-17}{3-20}=\frac{17\left(5-1\right)}{-17}=\frac{68}{-17}=-4\)

Bài 2: Tính giá trị của biểu thức:

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(A=\frac{1}{5}-\frac{1}{12}\)

\(A=\frac{7}{60}\)

Bài 3: Một số chia cho 7 dư 3, chia cho 17 dư 12, chia cho 23 dư 7. Hỏi số đó chia cho 2737 dư bao nhiêu?

Gọi số đã cho là A, theo đề bài ta có :

A = 7.a + 3 = 17.b + 12 = 23.c + 7 

Mặt khác :

A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39

            = 7(a + 6) = 17(b + 3) = 23(c + 2)

Như vậy A + 39 đồng thời chia hết cho 7, 17 và 23

Nhưng 7, 17 và 23 đồng thời là 3 số nguyên tố cùng nhau nên :

(A + 39) 7.17.23 hay (A + 39) 2737

Suy ra A + 39 = 2737.k suy ra A = 2737.k 39 = 2737(k - 1) + 2698

Do 2698 < 2737 nên 2698 là số dư của phép chia A cho 2737

29 tháng 4 2018

49(7+1)/49= 8

22 tháng 11 2018

Để \(\frac{2n+5}{n+3}\)là số tự nhiên thì :\(2n+5⋮n+3\)

\(\hept{\begin{cases}2n+5⋮n+3\\n+3⋮n+3\end{cases}}\)\(=>\hept{\begin{cases}2n+5⋮n+3\\2n+6⋮n+3\end{cases}=>2n+6-2n-5⋮n+3}\)

(=) 1\(⋮\)n+3

=> n+3\(\in\)Ư(1)

=> n ko tồn tại

22 tháng 11 2018

\(Tadellco::\left(\right)\left(\right)\)

\(\frac{2n+5}{n+3}\in Z\Rightarrow2n+5⋮n+3\Rightarrow2\left(n+3\right)-\left(2n+5\right)=1⋮n+3\Rightarrow n+3\in\left\{1;-1\right\}\)

\(\Rightarrow n\in\left\{-4;-2\right\}\)

b, \(Tadellco\left(to\right)\left(rim\right)\)

\(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\Rightarrow...........\)