K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

Giả sử \(2n=a^2+b^2\) (với \(a;b\in Z\) )

Ta có:  \(2n=\frac{\left(a-b\right)^2+\left(a+b\right)^2}{2}\)

nên \(n=\frac{\left(a-b\right)^2+\left(a+b\right)^2}{4}\)

\(\Leftrightarrow n=\left(\frac{a-b}{2}\right)^2+\left(\frac{a+b}{2}\right)^2\)

Vì  \(a;b\in Z\)  nên  \(a-b;a+b\in Z\)

Lại có:  \(a^2+b^2\) là hai số chẵn nên \(a;b\)  cùng chẵn hoặc cùng lẻ

\(\Rightarrow a-b;a+b\) là hai số chẵn

\(\Rightarrow\frac{a-b}{2};\frac{a+b}{2}\in Z\)

Vậy, ...

10 tháng 10 2019

đặt 2n =x^2+y^2 =>x^2+y^2 chia hết cho 2

x^2 đồng dư 0;1(mod 2)

y^2 đồng dư 0;1(mod 2)

=> x;y cùng tính chẵn lẻ

x^2/2+y^2/2=[(x+y)/2]^2+[(x-y)/2]^2 

mà x;y cùng chẵn lẻ(cmt) => x+y và x-y chia hết cho 2 =>cái biểu thức bên trên là số nguyên =>điều phải chứng minh

(xl vì mình lười viết quá sắp thi rồi bạn)

chúc học tốt.

10 tháng 10 2019

Ta có : N là tổng của 2 số chính phương 

Ta được : \(N=a^2+b^2\)

\(\Leftrightarrow2N=2\left(a^2+b^2\right)\)

\(\Leftrightarrow2N=2a^2+2b^2\)

\(\Leftrightarrow2N=a^2+a^2+2ab-2ab+b^2+b^2\)

\(\Leftrightarrow2N=\left(a^2+2ab+b^2\right)\left(a^2-2ab+b^2\right)\)

\(\Leftrightarrow2N=\left(a+b\right)^2\left(a-b\right)^2\left(đpcm\right)\)

Chúc bạn học tốt !!!

3 tháng 4 2020

2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

12 tháng 9 2019

Tớ cx chơi cho tham gia nha/////

12 tháng 9 2019

nma ai đó giải hộ tớ bài kia đi đã =))) Vụ chạy bo tính sau nhaaa :<<< 

21 tháng 8 2018

Gọi 3 số nguyên liên tiếp là:  a-1; a; a+1

Tổng của chúng là:

    a-1 + a + a+1 = 3a  chia hết cho 6

=>  a chia hết cho 2

Tổng lập phương của chúng là:

  A = (a-1)3 + a3 + (a+1)3 = 3a(a2 + 2)   chia hết cho 3

mà  a  chia hết cho 2; (3;2) =1

=> A chia hết cho 6

22 tháng 3 2020

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=8.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

.....

\(=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(=3^{128}-1\)

\(\Rightarrow A=\frac{3^{128}-1}{2}\)

17 tháng 2 2019

\(A=\left(2n^2\right)^2+2.\left(2n^2\right).\left(3n\right)+\left(3n\right)^2-4n^2-6n+1\)

\(=\left(2n^2+3n\right)^2-2.\left(2n^2+3n\right)+1=\left(2n^2+3n-1\right)^2\)