K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2021

Xét tam giác AHB vuông tại H ta có:

AH^2 = AB^2 - BH^2

=> AH^2 = 36 - 12,96 = 23,04

=> AH = 4,8 (cm)

Gọi độ dài CH là x (cm), AC là y (cm)

Xét tam giác AHC vuông tại H, ta có:

y^2 = x^2 + 4,8^2 = x^2 + 23,04 (1)

Xét tam giác ABC vuông tại A ta có:

y^2 = (3,6 + x)^2 - 6^2 = 12,96 + 7,2x + x^2 - 36 = x^2 + 7,2x - 23,04 (2)

(1),(2) => x^2 + 7,2x - 23,04 = x^2 +23,04

=> 7,2x = 46,08

=> x = 6,4 (cm)

Hay CH = 6,4 cm

=> y = 8 (cm)

Hay AC = 8 cm

BC = BH + CH = 3,6 + 6,4 = 10 (cm)

Vậy BC = 10 cm; AH = 4,8cm; CH = 6,4 cm; AC = 8 cm

 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=6,4\left(cm\right)\)

\(\Leftrightarrow BC=10\left(cm\right)\)

hay AC=8(cm)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

12 tháng 11 2021

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\end{matrix}\right.\)

12 tháng 11 2021

Áp dụng PTG ta có: \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{6^2+8^2}=10\)

Áp dụng HTL ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{6.8}{10}=4,8\)

Áp dụng HTL ta có:\(BH.BC=AB^2\Rightarrow BC=\dfrac{6^2}{10}=3,6\)

Áp dụng HTL ta có:\(CH.BC=AC^2\Rightarrow BC=\dfrac{8^2}{10}=6,4\)

11 tháng 6 2021

A B C 6 10 H D M N

a, Xét tam giác ABC vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AC^2=100-36=64\Leftrightarrow AC=8\)cm

* Áp dụng hệ thức : 

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm

* Áp dụng hệ thức : 

\(AH^2=CH.BH\)mà \(BC-BH=CH\Rightarrow CH=10-\frac{18}{5}=\frac{32}{5}\)cm 

\(\Rightarrow AH^2=\frac{32}{5}.\frac{18}{5}=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)cm 

Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=6+10+8=24\)cm 

Diện tích tam giác ABC là : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.6.8=24\)cm2

11 tháng 6 2021

b, Ta có AD là phân giác nên : \(\frac{AB}{BC}=\frac{BD}{CD}\)( t/c )

\(\Rightarrow\frac{CD}{BC}=\frac{BD}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{CD}{BC}=\frac{BD}{AB}=\frac{CD+BD}{AB+BC}=\frac{BC}{16}=\frac{1}{2}\)

\(\Rightarrow\frac{BD}{6}=\frac{1}{2}\Rightarrow BD=3\)cm 

\(\Rightarrow HD=BH-BD=\frac{18}{5}-3=\frac{3}{5}\)cm 

Áp dụng định lí Pytago cho tam giác ADH vuông tại H ta có : 

\(AD^2=HD^2+AH^2=\frac{9}{25}+\frac{576}{25}=\frac{585}{25}\Rightarrow AD=\frac{3\sqrt{65}}{5}\)cm

f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH+CH=25

hay BH=25-CH(2)

Thay (2) vào (1), ta được:

\(HC\left(25-HC\right)=144\)

\(\Leftrightarrow HC^2-25HC+144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)

BC=2*AM=10cm

AC=căn 10^2-6^2=8cm

AH=6*8/10=4,8cm

BH=AB^2/BC=6^2/10=3,6cm

MH=căn 5^2-4,8^2=1,4cm

28 tháng 7 2023

giải chỉ tiết giúp em với ạ