\(\varepsilon\)BC)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

Xét tam giác ABC vuông tại A, đường cao AH: AB.AC=AH.BC

Xét tam giác AHC vuông tại H, đường cao HF : AF.AC=AH2

Xét tam giác AHB vuông tại H, đường cao HE: AE.AB=AH

Nhân các đẳng thức trên vế theo vế : AE.AF.AB.AC=AH4 => 2SAEF.AH.BC=AH4 => SAEF=x3/4a

Vậy SAEF lớn nhất khi x lớn nhất, khi đó đường cao của tam giác vuông là lớn nhất --> trùng với trung tuyến --> x=a

23 tháng 9 2020

Một liên đội có khoảng 200 đến 300 đội viên.Mỗi lần xếp hàng 3,hàng 5 ,hàng 7 thì vừa đủ. Tính số đội viên

21 tháng 9 2020

A B C D E F H

Bài làm:

Ta có: \(\frac{AH}{HD}+\frac{BH}{HE}+\frac{CH}{HF}\)

\(=\left(\frac{AH}{HD}+1\right)+\left(\frac{BH}{HE}+1\right)+\left(\frac{CH}{HF}+1\right)-3\)

\(=\frac{AH+HD}{HD}+\frac{BH+HE}{HE}+\frac{CH+HF}{HF}-3\)

\(=\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}-3\)

\(=\frac{S_{ABC}}{S_{BHC}}+\frac{S_{ABC}}{S_{AHC}}+\frac{S_{ABC}}{S_{AHB}}-3\)

\(=S_{ABC}\left(\frac{1}{S_{BHC}}+\frac{1}{S_{AHC}}+\frac{1}{S_{AHB}}\right)-3\)

\(\ge S_{ABC}\cdot\frac{9}{S_{BHC}+S_{AHC}+S_{AHB}}-3\)

\(=S_{ABC}\cdot\frac{9}{S_{ABC}}-3\)

\(=9-3=6\)

Dấu "=" xảy ra khi H là trọng tâm tam giác ABC

=> Tam giác ABC đều => AB = AC vô lý

=> Không xảy ra dấu bằng

=> đpcm

21 tháng 9 2020

làm giùm thì được chứ subrice là ko

31 tháng 8 2020

Sử dụng bất đẳng thức AM - GM ta dễ thấy:

\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)

\(\ge2\sqrt{\left(a-1+2\sqrt{a-2}\right)\left(a-1-2\sqrt{a-2}\right)}\)

\(=2\sqrt{\left(a-1\right)^2-4\left(a-2\right)}=2\sqrt{a^2-6a+9}=2\sqrt{\left(a-3\right)^2}\ge2\)( vì a khác 3 ) 

Hoặc cách khác như thế này:

\(LHS=\sqrt{a-1+2\sqrt{a-2}}+\sqrt{a-1-2\sqrt{a-2}}\)

\(=\sqrt{\left[a-2+2\sqrt{a+2}+1\right]}+\sqrt{\left[a-2-2\sqrt{a-2}+1\right]}\)

\(=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)

\(=\left|\sqrt{a-2}+1\right|+\left|\sqrt{a-2}-1\right|\)

\(=\left|\sqrt{a-2}+1\right|+\left|1-\sqrt{a-2}\right|\ge\left|\sqrt{a-2}+1+1-\sqrt{a-2}\right|=2\)

Đẳng thức tự tìm nha

26 tháng 6 2019

A B C D I K H L

Trên cạnh CD lấy điểm L sao cho ^DAL = ^xAB = 150. Khi đó ^KAL = ^BAD - ^xAB - ^DAL = 900

Xét \(\Delta\)ALD và \(\Delta\)AIB: AD = AB, ^ADL = ^ABI (=600), ^DAL = ^BAI (=150) => \(\Delta\)ALD = \(\Delta\)AIB (g.c.g)

=> AI = AL (2 cạnh tuơng ứng). Xét \(\Delta\)AKL có ^KAL = 900 (cmt), đường cao AH

Suy ra \(\frac{1}{AL^2}+\frac{1}{AK^2}=\frac{1}{AH^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}a\right)^2}=\frac{4}{3a^2}\)(Hệ thức luợng tam giác vuông + Tỉ số lượng giác)

Hay \(\frac{1}{AI^2}+\frac{1}{AK^2}=\frac{4}{3a^2}\) (Vì AL = AI). Kết luận ...

28 tháng 7 2019

\(B=\frac{1}{-\left(x-2\sqrt{x}+1\right)-2}=\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\)

\(\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow-\left(\sqrt{x}-1\right)^2\le0\)

\(\Leftrightarrow-\left(\sqrt{x}-1\right)^2-2\le-2\)

\(\Leftrightarrow\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\ge\frac{1}{-2}=\frac{-1}{2}\)

\("="\Leftrightarrow x=1\)

Vậy biểu thức B đạt giá trị nhỏ nhất là -1/2 khi x=1