\(\bigtriangleup ABC\). Kẻ 3 đường trung trực của \(\big...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

Không có đk gì về tam giác ABC thì c/m bằng niềm tin à?

19 tháng 2 2019

Không tin có thể vẽ tam giác thường ra với độ dài 3 cạnh khác nhau.Sẽ thấy đề sai=) Giao điểm I cách đều 3 cạnh của tam giác này chứ không cách đều 3 đỉnh nhé.

12 tháng 3 2019

Bài thi đó

12 tháng 3 2019

bn tự lm đi

5 tháng 3 2019

Gợi ý làm bài :

HS tự vẽ hình, viết GT, KL.

a, \(\triangle ABC\) đều vì có AB = AC và \(\widehat{B}=60^{\text{o}}\).

b, Trong một tam giác đều, 3 đường cao bằng nhau (HS tự chứng minh).

Chiều cao của tam giác đều được tính bằng công thức \(h=a\frac{\sqrt{3}}{2}\).

c, HS tự chứng minh.

Nhận xét : Trọng tâm, trực tâm, tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp là 4 điểm trùng nhau.

5 tháng 3 2019

Hình vẽ :

A B C H K L

Chọn (A), (B), (C)

Không chọn (D), vì AG là đường trung tuyến, đã là đường trung tuyến thì không thể nào là đường cao được (đường trung tuyến AG là đường cao khi và chỉ khi tam giác ABC cân ở A).

20 tháng 2 2019

Hình vẽ : 

A B C

20 tháng 2 2019

A B C D

Chứng minh :

Giả sử \(\triangle ABC\) có AD là đường trung tuyến ứng với BC và \(DA=\frac{1}{2}BC\).

\(\Rightarrow AD=BD=CD\)

\(+AD=BC\Rightarrow\triangle ADC\text{ cân tại D}\)

\(\Rightarrow\widehat{A_1}=\widehat{C}\)

\(+AD=BD\Rightarrow\triangle ABD\text{ cân tại D}\)

\(\Rightarrow\widehat{A_2}=\widehat{B}\)

\(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}\)

\(\Rightarrow\widehat{A}=\widehat{B}+\widehat{C}\)

Trong \(\triangle ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}=\widehat{B}+\widehat{C}=\frac{180^0}{2}=90^0\)

hay \(\triangle ABC\) vuông tại A (đpcm)

B C A D K M Q

Xét tam giác ABC có A = 90*

=> BC2 = AB2 + AC2 

=> AC2 = BC2 - AB2

=> AC2 = 102 - 62

=> AC2 = 64

\(\Rightarrow AC^2=\sqrt{64}=8\)

Vậy AC = 8cm

b) K là trung điểm của BC => DK là trung tuyến 

A là trung điểm của BD => CA là trung tuyến

mà DK giao CA tại M

=> M là trọng tam tam giác BDC       ( 1 )
=> CM \(=\frac{2}{3}AC\)

=> CM = \(\frac{16}{3}cm\)

c) Đề bài phải là trung tuyến AC nhá

Trong tam giác vuông trung tuyến ứng với cạnh huyền = \(\frac{1}{2}\) cạnh huyền

=> Q là trung điểm của BC 

=> BQ là trung tuyến của tam giác BDC ( 2 )

Từ ( 1 ) và ( 2 ) => 3 điểm B , M , Q thẳng hàng

31 tháng 3 2019

Giải : 

A B C D H x E G

a/ Vì \(DH\perp BC\)

        \(Cx\perp BC\)

\(\Rightarrow DH//Cx\)

b/ Xét , có :

\(\widehat{HDE}=\widehat{CED}\text{ (hai góc so le trong của CE//DH)}\)

\(HD=EC\text{ (gt)}\)

\(\widehat{DHC}=\widehat{ECH}\left(=90^0\right)\)

\(\Rightarrow\Delta DHG=\Delta ECG\left(g.c.g\right)\).

c/ Vì \(\Delta DHG=\Delta ECG\left(c.m.t\right)\Rightarrow DG=GC\text{ (hai cạnh tương ứng)}\)

\(\Rightarrow\text{G là trung điểm của đoạn thẳng DE}\).

31 tháng 3 2019

Đề thi mà