\(\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2019

bài1   A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)

b)  thế \(x=-\frac{1}{2}\)vào biểu thức A

 \(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)

c)  A=\(-\frac{1}{3x}< 0\)

VÌ (-1) <0  nên  3x>0

                        x >0

11 tháng 12 2018

a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)

11 tháng 12 2018

Bạn có thể giúp mình 2 câu còn lại dc kh ạ 

22 tháng 12 2018

Bài 3 :

a) Phân thức xác định \(\Leftrightarrow x^2-1\ne0\Leftrightarrow\left(x-1\right)\left(x+1\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}}\)

Ta có : 

\(A=\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{3}{x-1}\)

Để A có giá trị bằng -2 thì \(\frac{3}{x-1}=-2\)

\(\Leftrightarrow3=-2x+2\)

\(\Leftrightarrow-2x=1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

b) Để A là số nguyên thì :

\(3⋮x-1\)

\(\Rightarrow x-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

\(\Rightarrow x\in\left\{2;4;0;-2\right\}\)( thỏa mãn ĐKXĐ )

Vậy...........

22 tháng 12 2018

\(a,ĐKXĐ:x\ne\pm1\)

Ta có : \(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{3}{x-1}\)

\(\Rightarrow\frac{3x+3}{x^2-1}=-2\Leftrightarrow\frac{3}{x-1}=-2\)

                                 \(\Leftrightarrow-2\left(x-1\right)=3\)

                                 \(\Leftrightarrow-2x+2=3\)

                                 \(\Leftrightarrow-2x=1\)

                                 \(\Leftrightarrow x=\frac{-1}{2}\)

\(b,\) Để phân thức \(\frac{3x+3}{x^2-1}\) có giá trị nguyên thì \(\frac{3}{x-1}\) có giá trị nguyên

                \(\Rightarrow3⋮x-1\)

                \(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

                \(\Rightarrow x\in\left\{0;2;-2;4\right\}\)

Vậy \(x=-2;0;2;4\)