Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I E F
a) Xét \(\Delta ABI,\Delta ACI\) có :
\(\widehat{ABI}=\widehat{ACI}\) (ΔABC cân tại A)
\(AB=AC\) (ΔABC cân tại A)
\(\widehat{AIB}=\widehat{AIC}\left(=90^o\right)\)
=> \(\Delta ABI=\Delta ACI\) (cạnh huyền - góc nhọn)
=> \(BI=CI\) (2 cạnh tương ứng)
Do đó : I là trung điểm của BC
b) Xét \(\Delta AEI,\Delta AFI\) có :
\(AE=AF\left(gt\right)\)
\(\widehat{EAI}=\widehat{FAI}\) (do \(\Delta ABI=\Delta ACI\))
\(AI:Chung\)
=> \(\Delta AEI=\Delta AFI\left(c.g.c\right)\)
=> \(IE=IF\) (2 cạnh tương ứng)
Do đó : ΔIEF cân tại I (đpcm)
c) Xét \(\Delta EBI,\Delta FCI\) có :
\(EI=FI\left(cmt-câub\right)\)
\(\widehat{EBI}=\widehat{FCI}\) (ΔABC cân tại A)
\(BI=IC\) (I là trung điểm của BC)
=> \(\Delta EBI=\Delta FCI\left(c.g.c\right)\)
=> đpcm
a.
Ta có: I là đường cao cũng là đường trung tuyến trong tam giác cân ABC
=> I là trung điểm BC
b.
Xét tam giác AEI và tam giác AFI, có:
AE = AF ( gt )
góc EAI = góc FAI ( AI là đường cao cũng là đường phân giác )
AI: cạnh chung
Vậy tam giác AEI = tam giác AFI ( c.g.c )
=> IE = IF ( 2 cạnh tương ứng )
=> Tam giác IEF cân tại I
c.
Ta có: AB = AC ( ABC cân )
Mà AE = AF ( gt )
=> BE = CF
Xét tam giác BEI và tam giác CFI, có:
BE = CF ( cmt )
góc B = góc C ( ABC cân )
IB = IC ( gt )
Vậy tam giác BEI = tam giác CFI ( c.g.c )
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
A B C E