Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a : \(\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)
Câu b : \(\left(x^2+x+1\right)\left(x-1\right)=x^3-1\)
Câu c : \(\left(x^2+2x+4\right)\left(x-2\right)=x^3-8\)
Câu d : \(\left(x-2\right)\left(x^2+2x+4\right)=x^3-8\)
Câu e : \(x^2+2x+1=\left(x+1\right)^2\)
Câu f : \(4x^2+8x+4=\left(2x+2\right)^2\)
Chúc bạn học tốt
a: \(\left(x+1\right)^2\)
b: \(\left(x^2+x+1\right)\left(x-1\right)\)
c: \(\left(x^2+2x+4\right)^2\)
d: \(\left(x-2\right)\left(x+2\right)\)
e: \(x^2+2x+1\)
a)\(\dfrac{x+5}{3x-2}=\dfrac{x\left(x+5\right)}{x\left(3x-2\right)}\) b)\(\dfrac{2x-1}{4}=\dfrac{\left(2x-1\right)\left(2x+1\right)}{8x+4}\) c)\(\dfrac{2x\left(x-2\right)}{x^2-4x+4}=\dfrac{2x}{x-2}\) d) \(\dfrac{5x^2+10x}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x}{x-2}\)
ý mình là vì sao được kết quả đó , giải thích ra giúp mình nha
\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)
Vậy \(A_{min}=1\Leftrightarrow x=-1\)
\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)
Vậy \(B_{min}=2\Leftrightarrow x=-2\)
a) \(2x\left(2x+5\right)-4x\left(x-3\right)=7\)
\(4x^2+10x-4x^2+12x=7\)
\(22x=7\Rightarrow x=0,31\)
b) \(\left(x+2\right)\left(x-2\right)-\left(x+1\right)^2=2\)
\(\left(x^2-4\right)-\left(x^2+2x+1\right)=2\)
\(x^2-4-x^2-2x-1=2\)
\(-2x=7\Rightarrow x=-3,5\)
c) \(\left(x+2\right)\left(x-1\right)-\left(x+3\right)\left(x-2\right)=0\)
\(x^2-x+2x-2-x^2+2x+3x-6=0\)
\(6x=8\Rightarrow x=1,3\)
BÀI 1:
a) \(x^4+2x^2y+y^2=\left(x^2+y\right)^2\)
b) \(\left(2a+b\right)^2-\left(2b+a\right)^2=\left(2a+b+2b+a\right)\left(2a+b-2b-a\right)\)
\(=\left(3a+3b\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)\)
c) \(\left(a^3-b^3\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left[a^2+ab+b^2+\left(a-b\right)\right]=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
d) \(\left(x^2+1\right)^2-4x^2=\left(x^2+1-2x\right)\left(x^2+1+2x\right)=\left(x-1\right)^2\left(x+1\right)^2\)
e) \(\left(y^3+8\right)+\left(y^2-4\right)=\left(y+2\right)\left(y^2-y+2\right)\)
f) \(1-\left(x^2-2xy+y^2\right)=1-\left(x-y\right)^2=\left(1-x+y\right)\left(1+x-y\right)\)
g) \(x^4-1=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
h) ktra lại đề
m) \(\left(x-a\right)^4-\left(x+a\right)^4=-8ax\left(a^2+x^2\right)\)
a) Để \(\frac{2x+3}{4x-5}=0\)
=> 2x + 3 = 0
x = -3/2
b) Để \(\frac{\left(x-1\right)\left(x+2\right)}{x^2-4x+3}=\frac{\left(x-1\right).\left(x+2\right)}{\left(x-3\right).\left(x-1\right)}=\frac{x+2}{x-3}=0\)
=> x + 2 = 0=> x = -2
c) để \(\frac{x^2-1}{x^2-2x+1}=\frac{\left(x-1\right).\left(x+2\right)}{\left(x-1\right)^2}=\frac{x+2}{x-1}=0\)
=> x + 2 = 0 => x = -2
d) để \(\frac{x^2-4}{x^2+3x-10}=\frac{\left(x+2\right).\left(x-2\right)}{\left(x-2\right).\left(x+5\right)}=\frac{x+2}{x+5}=0\)
=> ...
e) để \(\frac{x^3-16x}{x^3-3x^2-4x}=\frac{x.\left(x-4\right).\left(x+4\right)}{x.\left(x-4\right).\left(x+1\right)}=\frac{x+4}{x+1}=0\)
=> ....
\(a)\frac{2x-1}{5x-10}\) \(\text{Đ}K:x\ne2\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}(TM)\)
\(b)\frac{x^2-x}{2x}\) \(\text{Đ}K:x\ne0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x.(x-1)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0(lo\text{ại})\\x=1(TM)\end{cases}}\)
\(c)\frac{2x+3}{4x-5}\) \(\text{Đ}K:x\ne\frac{5}{4}\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow x=\frac{-3}{2}(TM)\)
\(d)\frac{(x-1).(x+2)}{(x-3).(x-1)}\) \(\text{Đ}K:\hept{\begin{cases}x\ne3\\x\ne1\end{cases}}\)
\(\Leftrightarrow(x-1).(x+2)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1(l\text{oại})\\x=-2(TM)\end{cases}}\)
gửi cho 4 câu trc
fuck chứ ko phải fack