Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đó giúp mk đi mà
à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đó
giúp mk nha
cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{199}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+..+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{101}+...+\dfrac{1}{199}+\dfrac{1}{200}\)
Ta có:
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(\Rightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
Nhận xét:
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{1}{6}\)
\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{3}{5}\)
\(\Rightarrow S>\frac{3}{5}\left(1\right)\)
Lại có:
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
Nhận xét:
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{1}{3}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{5}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{4}{5}\)
\(\Rightarrow S< \frac{4}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\frac{3}{5}< S< \frac{4}{5}\) (Đpcm)
b: \(C=\left(\dfrac{12}{199}+\dfrac{23}{200}-\dfrac{34}{201}\right)\cdot\dfrac{3-2-1}{6}=0\)
a) \(1\dfrac{13}{15}.\left(-5\right)^2.3+\left(\dfrac{8}{15}-\dfrac{19}{60}\right):1\dfrac{23}{24}\)
\(=\dfrac{28}{15}.25.3+\dfrac{13}{60}.\dfrac{24}{47}\)
\(=140+\dfrac{26}{235}=140\dfrac{26}{235}\)
b) \(\dfrac{\left(\dfrac{11^2}{200}+0,414:0,01\right)}{\dfrac{1}{12}-37.25+3\dfrac{1}{6}}\)
\(=\dfrac{\left(\dfrac{121}{200}-41,4\right)}{\dfrac{1}{12}-92519+\dfrac{19}{6}}\)
\(=\dfrac{2\dfrac{191}{207}}{-9251575}\)
\(S^2=\left(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{199}{200}\right)\left(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{199}{200}\right)\\ \text{Ta có:}\\ \dfrac{1}{2}< \dfrac{2}{3}\\ \dfrac{3}{4}< \dfrac{4}{5}\\ \dfrac{5}{6}< \dfrac{6}{7}\\ ...\\ \dfrac{199}{200}< \dfrac{200}{201}\\ \Rightarrow S^2< \left(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{199}{200}\right)\left(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{200}{201}\right)\\ \Leftrightarrow S^2< \dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{199}{200}\cdot\dfrac{200}{201}\\ \Leftrightarrow S^2< \dfrac{1\cdot2\cdot3\cdot...\cdot200}{2\cdot3\cdot4\cdot...\cdot201}\\ \Leftrightarrow S^2< \dfrac{1}{201}< \dfrac{1}{200}\)
Vậy ...