Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
omg tưởng chị lặn k on nữa chứ, thấy chị đổi ảnh bìa tưởng do máy e cập nhập muộn hóa ra chị on lại
\(\dfrac{1}{\sqrt{5}-\sqrt{3}}+\dfrac{5\sqrt{3}-3\sqrt{5}}{2\sqrt{15}-\sqrt{20}}\)
\(=\dfrac{1}{\sqrt{5}-\sqrt{3}}+\dfrac{5\sqrt{3}-3\sqrt{5}}{2\left(\sqrt{15}-\sqrt{5}\right)}\)
\(=\dfrac{2\sqrt{15}-2\sqrt{5}+\sqrt{15}\left(8-2\sqrt{15}\right)}{2\sqrt{5}\left(\sqrt{3}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
\(=\dfrac{2\sqrt{15}-2\sqrt{5}+8\sqrt{15}-30}{2\sqrt{5}\left(\sqrt{3}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
\(=\dfrac{10\sqrt{15}-2\sqrt{5}-30}{2\sqrt{5}\left(\sqrt{3}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
\(=\dfrac{2\sqrt{5}\left(5\sqrt{3}-1-3\sqrt{5}\right)}{2\sqrt{5}\left(\sqrt{3}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{5\sqrt{3}-3\sqrt{5}-1}{\left(\sqrt{3}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
\(\dfrac{1}{\sqrt{5}-\sqrt{3}}+\dfrac{5\sqrt{3}-3\sqrt{5}}{2\sqrt{15}-\sqrt{20}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\dfrac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{2\sqrt{5}\left(\sqrt{3}-1\right)}\)
\(=\dfrac{\sqrt{5}+3}{5-3}+\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{3}\right)}{2\left(\sqrt{3}-1\right)}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{2}+\dfrac{\left(\sqrt{15}-3\right)\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}}{2}+\dfrac{3\sqrt{5}+\sqrt{15}-3\sqrt{3}-3}{2\cdot2}\)
\(=\dfrac{2\sqrt{5}+2\sqrt{3}+3\sqrt{5}+\sqrt{15}-3\sqrt{3}-3}{4}\)
\(=\dfrac{5\sqrt{5}-\sqrt{3}+\sqrt{15}-3}{4}\)
\(M=\left(\dfrac{3}{\sqrt{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt{x}-5}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{3\sqrt{x}-9+x+9}{x-9}:\dfrac{2\sqrt{x}-5-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+3\sqrt{x}}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-2}\)
\(=\dfrac{x\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{x}{\sqrt{x}-2}\)
b:
ĐKXĐ: x>=4
\(5\sqrt{4x-16}-\dfrac{7}{3}\cdot\sqrt{9x-36}=36-3\sqrt{x-4}\)
=>\(5\cdot2\cdot\sqrt{x-4}-\dfrac{7}{3}\cdot3\cdot\sqrt{x-4}+3\sqrt{x-4}=36\)
=>\(6\sqrt{x-4}=36\)
=>\(\sqrt{x-4}=6\)
=>x-4=36
=>x=40
Lời giải:
a. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}=4+3.\sqrt{\frac{1}{9}}.\sqrt{x-5}$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}=4+\sqrt{x-5}$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
b. Sửa đoạn 4x-45 thành 4x-20.
ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{4}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\frac{1}{3}\sqrt{x-5}-\frac{2}{3}\sqrt{x-5}=4$
$\Leftrightarrow \frac{5}{3}\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=\frac{12}{5}$
$\Leftrightarrow x-5=\frac{144}{25}=5,76$
$\Leftrightarrow x=10,76$ (tm)
\(3\sqrt{x^2-4x+9}=3x-9\)
\(\Leftrightarrow x^2-4x+9=x^2-6x+9\)
\(\Leftrightarrow x=0\left(loại\right)\)
Lời giải:
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow 2\sqrt{x+2}+3\sqrt{4}.\sqrt{x+2}-\sqrt{9}.\sqrt{x+2}=10$
$\Leftrightarrow 2\sqrt{x+2}+6\sqrt{x+2}-3\sqrt{x+2}=10$
$\Leftrightarrow 5\sqrt{x+2}=10$
$\Leftrightarrow \sqrt{x+2}=2$
$\Leftrightarrow x+2=4$
$\Leftrightarrow x=2$ (tm)
Điều kiện: \(x\ge5\).
Phương trình tương đương với:
\(\sqrt{4\left(x-5\right)}+\dfrac{3\sqrt{x-5}}{\sqrt{9}}=3\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}=3\)
\(\Leftrightarrow\sqrt{x-5}=1\Rightarrow x-5=1\Leftrightarrow x=6\left(TM\right)\)
Vậy: Phương trình có tập nghiệm \(S=\left\{6\right\}\).