Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(2x^3-1=15\Rightarrow x^3=8\Rightarrow x=2\)
\(\frac{y-25}{16}=2\Rightarrow y=2.16+25=57\)
\(\frac{z+9}{25}=2\Rightarrow z=25.2-9=41\)
\(2x^3-1=15\)
\(2x^3=16\)
\(x^3=8\)
\(x=2\)
\(\Rightarrow\frac{x+16}{9}=\frac{2+16}{9}=\frac{18}{9}=2\)
\(\Rightarrow\frac{y-25}{16}=2\)
\(\Rightarrow y-25=32\)
\(\Rightarrow y=57\)
\(\Leftrightarrow\frac{z+9}{25}=2\)
\(\Rightarrow z+9=50\)
\(\Rightarrow z=50-9=41\)
Vậy \(z=41;x=2;y=57\)
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
\(\Leftrightarrow\frac{13}{36}x=-\frac{8}{45}\)
\(\Rightarrow x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right).\left(-\frac{2}{3}\right)+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow-\frac{4}{9}x+\frac{1}{3}+\frac{1}{5}=-\frac{3}{4}\)
\(\Leftrightarrow\frac{4}{9}x=\frac{77}{60}\)
\(\Rightarrow x=\frac{231}{80}\)
a) \(\frac{4}{9}x+\frac{2}{5}-\frac{1}{3}x=\frac{2}{9}-\frac{1}{4}x\)
=> \(\frac{4}{9}x-\frac{1}{3}x+\frac{2}{5}-\frac{2}{9}+\frac{1}{4}x=0\)
=> \(\left(\frac{4}{9}x-\frac{1}{3}x+\frac{1}{4}x\right)+\left(\frac{2}{5}-\frac{2}{9}\right)=0\)
=> \(\frac{13}{36}x+\frac{8}{45}=0\)
=> \(\frac{13}{36}x=-\frac{8}{45}\)
=> \(x=-\frac{32}{65}\)
b) \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}+\frac{1}{5}=\frac{-3}{4}\)
=> \(\left(\frac{2}{3}x-\frac{1}{2}\right)\cdot\frac{-2}{3}=-\frac{19}{20}\)
=> \(\frac{2}{3}x-\frac{1}{2}=\left(-\frac{19}{20}\right):\left(-\frac{2}{3}\right)=\left(-\frac{19}{20}\right)\cdot\left(-\frac{3}{2}\right)=\frac{57}{40}\)
=> \(\frac{2}{3}x=\frac{57}{40}+\frac{1}{2}=\frac{77}{40}\)
=> \(x=\frac{77}{40}:\frac{2}{3}=\frac{77}{40}\cdot\frac{3}{2}=\frac{231}{80}\)
a) ta có:
\(|2x-6|+5x=9\Leftrightarrow|2x-6|=9-5x\)
\(2x-6=9-5x\Leftrightarrow7x=15\Leftrightarrow x=\frac{15}{7}\)
\(2x-6=5x-9\Leftrightarrow3x=3\Leftrightarrow x=1\)
b) Ta có:
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+329}{5}+4=0\)
\(\Leftrightarrow\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
do \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\ne0\)nên \(x+329=0\Leftrightarrow x=-329\)
Vậy ............................................. chúc bn hok tốt ^-^
\(-\frac{5}{9}\left(\frac{3}{10}-\frac{2}{5}\right)=-\frac{5}{9}\left(\frac{3}{10}-\frac{4}{10}\right)=-\frac{5}{9}.\frac{-1}{10}=\frac{1}{18}\)
\(\frac{1}{2}\sqrt{64}-\sqrt{\frac{9}{25}}+1^{2016}=\frac{1}{2}.8-\frac{3}{5}+1=4+\frac{2}{5}=\frac{22}{5}\)
\(2^8:2^5+3^2.2-12=2^3+9.2-12=8+18-12=8+6=14\)
\(3^x+\sqrt{\frac{16}{81}}-\sqrt{9}+\frac{\sqrt{81}}{3}=9\frac{4}{9}\)
\(3^x+\frac{4}{9}-3+\frac{9}{3}=9\frac{4}{9}\)
\(3^x+\frac{4}{9}-3+3=9\frac{4}{9}\)
\(3^x+\frac{4}{9}=9+\frac{4}{9}\)
\(\Rightarrow3^x=9+\frac{4}{9}-\frac{4}{9}\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)
ta có :
\(\frac{x}{3}=\frac{y}{5}\)
\(\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)
\(\frac{x}{12}=3\Rightarrow x=36\)
\(\frac{y}{20}=2\Rightarrow y=40\)
\(\frac{z}{15}=2\Rightarrow z=30\)
Vì \(\left|x+\frac{25}{47}\right|\ge0\forall x\inℝ\); \(\left|y-\frac{9}{17}\right|\ge0\forall y\inℝ\)
\(\Rightarrow\left|x+\frac{25}{47}\right|+\left|y-\frac{9}{17}\right|\ge0\forall x;y\inℝ\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+\frac{25}{47}=0\\y-\frac{9}{17}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{-25}{47}\\y=\frac{9}{17}\end{cases}}\)