\(x^3+x=0\)Tìm x:

a) \(x^2-2x-3=0\)  

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=.....=...

kb vs mình nha

11 tháng 7 2018

   \(x^3+x=0\)

\(\Leftrightarrow\)\(x\left(x^2+1\right)=0\)

\(\Leftrightarrow\)\(x=0\)

    \(x^2-2x-3=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Vậy...

       \(2x^2+5x-3=0\)

\(\Leftrightarrow\)\(\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}\)

Vậy...

        \(x+5x^2=0\)

\(\Leftrightarrow\)\(x\left(5x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\5x+1=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)

Vậy...

11 tháng 7 2018

\(x^3+x=0\)

\(\Rightarrow x.\left(x^2+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varnothing\end{cases}}\)

\(x^2-2x-3=0\)

\(\Rightarrow x.\left(x-2\right)=3\)

Vì \(x>x-2\)và \(x\inƯ\left(3\right)=\left\{3;-3\right\}\)

Các phần sau tương tự

11 tháng 7 2018

\(b,x^2-6x+8=0\)

\(\Rightarrow x^2-2.3.x+9=1\)

\(\Rightarrow\left(x-3\right)^2=1\)

\(\Rightarrow x-3=\orbr{\begin{cases}1\\-1\end{cases}}\)

\(\Rightarrow x=\orbr{\begin{cases}4\\2\end{cases}}\)

\(d,x+5x^2=0\)

\(\Rightarrow x\left(1+5x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\1+5x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)

11 tháng 7 2018

a)  \(2x^2+5x-3=0\)

\(\Leftrightarrow\)\(\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}\)

Vậy...

b)  \(x^2-6x+8=0\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

Vậy...

c)  \(x+5x^2=0\)

\(\Leftrightarrow\)\(x\left(5x+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\5x+1=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)

Vậy...

27 tháng 8 2017

\(a,\)\(x^4-4x^3+4x^2=0\)

\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)

\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b,\)\(x^2+5x+4=0\)

\(\Leftrightarrow x^2+x+4x+4=0\)

\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

\(c,\)\(9x-6x^2-3=0\)

\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow2x^2-2x-x+1=0\)

\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

\(d,\)\(2x^2+5x+2=0\)

\(\Leftrightarrow2x^2+4x+x+2=0\)

\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)

18 tháng 9 2018

a,x2+6x-7=0

=>x2+7x-x-7=0

=>(x^2+7x)-(x+7)=0

=>x(x+7)-(x+7)=0 =>(x+7)(x-1)=0

=>\(\orbr{\begin{cases}x+7=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=1\end{cases}}}\)

b, x^3-2x^2-5x+6=0

=>x(x^2-2x-5+6)=0

=>x(x^2-2x+1)=0\(^{\orbr{\begin{cases}x=0\\\left(x-1^2\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

c, 2x^2-5x+3=0

=>2x^2-2x-3x+3=0

18 tháng 9 2018

\(x^3-19x-30=0\)

\(\Rightarrow x^3+5x^2+6x-5x^2-25x-30=0\)

\(\Rightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x^2+2x+3x+6\right)=0\)

\(\Rightarrow\left(x-5\right)[x\left(x+2\right)+3\left(x+2\right)]=0\)

\(\Rightarrow\left(x-5\right)\left(x+3\right)\left(x+2\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-5=0\\x+3=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\x=-3\\x=-2\end{cases}}\)

5 tháng 11 2017

1.

a. x2 - 2x + 1 = 0

x2 - 2x*1 + 12 = 0

(x-1)2 = 0

............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)

1, Tìm x biết:

a, x2 - 2x +1 = 0

(x-1)2 = 0

x-1 = 0

x = 1. Vậy ...

b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30

25x2 +10x + 1 - (25x2 -9) = 30

25x2 +10x + 1 - 25x2 +9 = 30

10x + 10 =30

10(x+1) = 30

x+1 =3

x = 2. vậy ...

c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5

(x3 - 1) - x(x2 -4) = 5

x3 - 1 - x3 + 4x = 5

4x - 1 = 5

4x = 6

x = \(\dfrac{3}{2}\) .vậy ...

d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15

x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15

x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15

24x + 25 = 15

24x = -10

x = \(\dfrac{-5}{12}\) vậy ...

2 tháng 7 2017

\(a,x^4+2x^3+x^2=\left(x^2+x\right)^2\)

\(b,x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)\)\(=\left(x-1\right)\left(x+6\right)\)

\(c,5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)\(x^4+8x=x\left(x^3+8\right)=x\left(x+2\right)\left(x^2-2x+4\right)\) \(e,x^2+x-6=x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)=\left(x-2\right)\left(x+3\right)\)\(f,x^2-2x-3=x^2-3x+x-3=x\left(x-3\right)+\left(x-3\right)=\left(x+1\right)\left(x-3\right)\)\(h,2x^2+5x-3=0\Leftrightarrow2x^2-6x+x-3=0\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

31 tháng 7 2018

1,x^2-(x+1)(x-1)=0
x^2-x^2+1+0
1=0(vô lý)
2,5x^3+3x^2+3x+1=4x^2
x^3+3x^2+3x+1=0
(x+1)=0
x=-1
3,x^3+x^2=0
x^2(x+1)=0
x=0 or x=-1
4,2x^3-12x^2+18x=0
x^3-6x^2+9x=0
x(x^2-6x+9)=0
x(x-3)^2=0
x=0 or x=3
5,5x^2-4(x^2-2x+1)+20=0
5x^2-4x^2+8x-4+20=0
x^2+8x+16=0
(x+4)^2=0
x=-4
6,5x(x-3)+7x-21=0
5x(x-3)+7(x-3)=0
(5x+7)(x-3)=0
5x-7=0 or x-3=0
x=7/5 or x=3
7,2x^3-50x=0
2x(x^2-25)=0
2x(x-5)(x+5)=0
x=0 or x=5 or x=-5
8,(4x-1)^2-9(x+3)^2=0
(4x-1)^2-3^2*(x+3)^2=0
(4x-1)^2-(3x+9)^2=0
(4x-1-3x-9)(4x-1+3x+9)=0
(x-10)(7x+8)=0
x=10 or x=-8/7
9,3(x-2)^2-x+2=0
3*(x-2)*(x-2)-(x-2)=0
(3x-6)(x-2)-(x-2)=0
(x-2)(3x-6-1)=0
(x-2)(3x-7)=0
x=2 or x=7/3
10,9x^2+6x-8=0
9x^2+12x-6x-8=0
3x(3x-2)+4(3x-2)=0
(3x+4)(3x-2)=0
3x+4=0 or 3x-2=0
x=-4/3 or x=2/3

12 tháng 8 2019

b) \(7x\left(x-2\right)-\left(x-2\right)=0\) 

<=>  \(\left(7x-1\right)\left(x-2\right)=0\)

=> x=1/7  hoặc x=2

c) <=>  (2x-1)3   =0 

=> x=1/2

d)<=>  \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

<=>  \(\left(2x-3\right)\left(x+3\right)=0\)

=> x=3/2  hoặc x=-3

e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)

<=> \(\left(x+5\right)\left(x^2+9\right)=0\)

=> x=-5

f) \(x^3-6x^2-x+30=0\)

<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)

<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)

<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)

=> x=-2 hoặc x=5 hoặc x=3