K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

Đoạn thẳng AB có trung điểm là I(2; 2; 3)

Mặt phẳng trung trực của đoạn AB đi qua I và có vecto pháp tuyến là  n →  =  IB →  = (1; 4; −1). Phương trình mặt phẳng trung trực của đoạn AB là:

1(x – 2) + 4(y – 2) – 1(z – 3) = 0 hay x + 4y – z – 7 = 0.

17 tháng 5 2019

Giải bài 2 trang 80 sgk Hình học 12 | Để học tốt Toán 12

26 tháng 5 2017

Hình giải tích trong không gian

1 tháng 4 2017

Giải:

Cách 1 : Mặt phẳng trung trực (P) của đoạn thẳng AB chính là đoanh thẳng qua trung điểm I của AB và vuông góc với vectơ

Ta có (2 ; -2; -4) và I(3 ; 2 ; 5) nên phương trình mặ phẳng (P) là:

2(x - 3) - 2(y - 2) - 4(z - 5) = 0 hay x- -2y -2z + 9 = 0.

Cách 2: Mặt phẳng trung trực (P) của đoạn thẳng AB là tập hợp điểm M(x ; y ; z) trong không gian sao cho:

MA = MB ⇔ MA2 = MB2

⇔ (x – 2)2 + (y – 3)2 + (z – 7)2 = (x – 4)2 + (y – 1)2 + (z – 3)2

⇔ - 4x + 4 - 6y + 9 - 14z + 49 = - 8x + 16 - 2y + 1 - 6z +9

⇔ 4x - 4y - 8z + 36 = 0

⇔ x - y - 2z + 9 = 0.

5 tháng 4 2016

Gọi M là trung điểm của AB, ta có \(M=\left(\frac{3}{2};\frac{1}{2};-\frac{1}{2}\right)\)

Vì (P) là mặt phẳng trung trực của AB nên (P) đi qua M và \(\overrightarrow{AB}=\left(-1;1;-1\right)\) là một vecto pháp tuyến  của (P)

Suy ra, phương trình của (P) là : \(\left(-1\right)\left(x-\frac{3}{2}\right)+\left(y-\frac{1}{2}\right)+\left(-1\right)\left(z+\frac{1}{2}\right)=0\)

                                        hay : \(2x-2y+2z-1=0\)

Ta có : \(d\left(O,\left(P\right)\right)=\frac{\left|-1\right|}{\sqrt{2^2+\left(-2\right)^2+2^2}}=\frac{1}{2\sqrt{3}}\)

Do đó phương trình mặt cầu tâm O , tiếp xúc với (P) là \(x^2+y^2+z^2=\frac{1}{12}\)

                                                                          hay : \(12x^2+12y^2+12z^2-1=0\)

22 tháng 3 2017

28 tháng 1 2017

Đáp án A

Mặt phẳng (P) đi qua trung điểm I của đoạn thẳng AB và vuông góc với AB.

5 tháng 5 2016

Từ giả thiết suy ra \(\overrightarrow{AB}=\left(4;4;4\right)=4\left(1;1;1\right)\)

Gọi (P) là mặt phẳng trung trực của đoạn AB. Khi đó, (P) đi qua trung điểm M của AB và nhận vecto \(\overrightarrow{n}=\frac{1}{4}\overrightarrow{AB}\) làm vecto pháp tuyến. Do M là trung điểm AB nên M(3;4;5).

Khi đó , mặt phẳng (P) cần tìm có phương trình :

\(1\left(x-3\right)+1\left(y-4\right)+1\left(z-5\right)=0\)

hay \(x+y+z-12=0\)