Trong một thí nghiệm I-âng, hai khe S1, S2 cách nhau một khoảng a = 1,8...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

O
ongtho
Giáo viên
14 tháng 1 2016

Kính lúp đóng vai trò chính là màn hứng. 

Lúc đầu: \(i = \frac{\lambda D}{a}= \frac{2,4}{16}= 0,15mm.(1)\)

               \(i' = \frac{\lambda (D+0,3)}{a}= 0,24mm.\)

=> \(\frac{i}{i'}= \frac{D}{D+0,3}= \frac{5}{8}.\)

=> \(D = 0,5m.\)

Bước sóng của bức xạ là \(\lambda = \frac{ai}{D} = \frac{1,8.0,15}{0,5}=0,54 \mu m.\)

3 tháng 6 2021

em lại cứ tưởng cái kính lúp đáng sợ lắm 

 

3 tháng 2 2017

Gọi L là khoảng cách giữa hai vân sáng ngoài cùng

N là số vân sang quan sát được

Ta có hai trường hợp :

Đáp án B

16 tháng 8 2018

Gọi D là khoảng cách từ màn mang hai khe  F 1 ,   F 2  đến mặt phẳng tiêu vật của kính lúp, ở vị trí thứ nhất, và D + 30 là khoảng cách ở vị trí thứ hai. Ta có hai phương trình :

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12

Giải ra ta được : D = 50 cm và λ = 0,54 μm.

18 tháng 1 2016

Tịnh tiến màn quan sát lại gần mặt phẳng chưa hai khe 25 cm tức là \(D' = D-0,25.\)
\(i_1 = \frac{\lambda D}{a}\\ i_2 =\frac{\lambda (D-0,25)}{a} \)=> \(\frac{i}{i'}= \frac{D}{D-0,25}= \frac{5}{4}\)

                       => \(D = 5.0,25 = 1,25m.\)

                      => \(\lambda = \frac{i.a}{D}= 0,48 \mu m.\)

Chú ý là giữ nguyên đơn vị i (mm); a (mm) ; D (m) thì đơn vị bước sóng \(\lambda (\mu m)\).

28 tháng 2 2018

Em vẫn chưa hiểu cho lắm ạ. Đầu bài không cho D thì tính lần lượt ra 5/4 kiểu gì ạ? Mong a/c giải thích giúp e với ạ.

11 tháng 1 2019

Khi quan sát vân bằng kính lúp thì ta trông thấy ảnh của hệ vân nằm trên mặt phẳng tiêu vật của kính lúp và ảnh đó ở xa vô cùng (H.25.1G).

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12

Ta thấy  α = tan α = i/f = 12,5'

Khoảng cách từ hai khe tới mặt phẳng của các vân : D = L - f = 40 - 4 = 36 cm = 0,36 m.

Bước sóng của bức xạ là :

Giải sách bài tập Vật Lí 12 | Giải sbt Vật Lí 12

4 tháng 6 2016
+ Khoảng vân: \(i=\frac{\lambda D}{a}=1,8\left(mm\right)\)
+ Xét tỉ số: \(\frac{x_M}{i}=3\) 
\(\Rightarrow\) Tại M là vân sáng bậc 3.
4 tháng 6 2016

 

Trong thí nghiệm Iâng về giao thoa ánh sáng, hai khe hẹp cách nhau một khoảng 0,5 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 1,5 m. Hai khe được chiếu bằng bức xạ có bước sóng 0,6 μmμm. Trên màn thu được hình ảnh giao thoa. Tại điểm M trên màn cách vân sáng trung tâm một khoảng 5,4 mm có 

 

A.  vân sáng bậc 2

B. vân sáng bậc 4

C. vân sáng bậc 3 

D. vân sáng thứ 4

O
ongtho
Giáo viên
25 tháng 1 2016

Khoảng vân

 \(i_1 = \frac{\lambda_1 D}{a} , i_2 = \frac{\lambda_2 D}{a} ​\)

 => \(\frac{i_1}{i_2}=\frac{\lambda _1}{\lambda_2}= \frac{4}{7}=> i_2 = \frac{7}{4}i_1=0,35 mm.\)

4 tháng 6 2016

 + Ban đầu M là vân tối thứ 3 nên: \(x_M=\left(2+\frac{1}{2}\right)\frac{\lambda D}{a}\left(1\right)\)
+ Khi giãm S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc n nên: \(x_M=n\frac{\lambda D}{a-\Delta a}\left(2\right)\)
+ Khi tăng S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc 3n nên: \(x_M=3n\frac{\lambda D}{a+\Delta a}\left(3\right)\)
+ (2) và (3) \(\Rightarrow k\frac{\lambda D}{a-\Delta a}=3k\frac{\lambda d}{a+\Delta a}\Rightarrow\Delta a=\frac{a}{2}\)
+ Khi tăng S1S2 một lượng 2\(\Delta\)a thì M là sáng bậc k nên: \(x_M=k\frac{\lambda D}{a+2\Delta a}=2,5\frac{\lambda D}{a}\left(4\right)\)
+ Từ (1) và (4) \(\Rightarrow\) k = 5. Vậy tại M lúc này là vân sáng bậc 5.

4 tháng 2 2016

Số vân sáng quan sát được là
\(N_s = N_{s1}+ N_{s2}-N_{trung nhau} =17.\)

Số vân sáng của \(\lambda_1\) trên trường giao thoa L là 

\(N_{s1}= 2.[\frac{L}{2i_1}]+1 = 9.\)

=>  \(N_{s2}= N_s-N_{s1}-N_{trung nhau} = 17-9+3=11.\)