Trong các hàm số sau, hàm số nào có đồ thị nhận đường thẳng x = 1 làm trục đối xứng?
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

giúp mình với mình đang cần gấp

30 tháng 10 2022

a: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{2x_1+3-2x_2-3}{x_1-x_2}=2>0\)

=>Hàm số đồng biến trên R

b: Lấy x1<2; x2<2; x1<x2

\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2-4x_1-x_2^2+4x_2}{x_1-x_2}=\left(x_1+x_2\right)-4\)

Vì x1<2; x2<2 thì x1+x2<4

=>A<0

=>Hàm số nghịch biến

c: \(A=\dfrac{-x_1^2+2x_1+1+x_2^2-2x_2-1}{x_1-x_2}=-\left(x_1+x_2\right)+2\)

Vì x1>1; x2>1 nên x1+x2>2

=>-(x1+x2)<-2

=>A<0

=>Hàm số nghịch biến

a: \(x^2-2x+\left|x-1\right|-1=0\)

\(\Leftrightarrow x^2-2x+1+\left|x-1\right|-2=0\)

\(\Leftrightarrow\left(\left|x-1\right|\right)^2+\left|x-1\right|-2=0\)

\(\Leftrightarrow\left(\left|x-1\right|+2\right)\left(\left|x-1\right|-1\right)=0\)

=>|x-1|=1

=>x-1=1 hoặc x-1=-1

=>x=2 hoặc x=0

b: \(4x^2-4x-\left|2x-1\right|-1=0\)

\(\Leftrightarrow4x^2-4x+1-\left|2x-1\right|-2=0\)

\(\Leftrightarrow\left(\left|2x-1\right|\right)^2-\left|2x-1\right|-2=0\)

\(\Leftrightarrow\left(\left|2x-1\right|-2\right)\left(\left|2x-1\right|+1\right)=0\)

=>|2x-1|=2

=>2x-1=2 hoặc 2x-1=-2

=>x=3/2 hoặc x=-1/2

c: \(\left|2x-5\right|+\left|2x^2-7x+5\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\\left(2x-5\right)\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{5}{2}\)

d: \(x^2-2x-5\left|x-1\right|-5=0\)

\(\Leftrightarrow x^2-2x+1-5\left|x-1\right|-6=0\)

\(\Leftrightarrow\left(\left|x-1\right|\right)^2-5\left|x-1\right|-6=0\)

\(\Leftrightarrow\left(\left|x-1\right|-6\right)\left(\left|x-1\right|+1\right)=0\)

=>|x-1|=6

=>x-1=6 hoặc x-1=-6

=>x=7 hoặc x=-5

8 tháng 8 2019

Câu 1:

a) Hàm số \(y=-x^2+2x+3\)

Cho x=0=>y=3 là giao điểm của đường thẳng với trục hoành.

b)

Tọa độ đỉnh I của hàm số \(\left(1;4\right)\)

Trục đối xứng là x=1

Do a=-1<0 nên hàm số đồng biến trên \(\left(-\infty;1\right)\) và nghịch biến trên khoảng \(\left(1;\infty\right)\).

( dựa vô đây bạn tự vẽ bảng biến thiên và vẽ đồ thị nha)