Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5 trang 156 Sách Bài Tập (SBT) Toán 9 Tập 1.
a) Đúng
b) Sai vì hai đường tròn có ba điểm chung phân biệt thì chúng trùng nhau.
c) Sai vì tam giác vuông có tâm đường tròn ngoại tiếp nằm trên cạnh huyền, tam giác tù giao điểm của ba đường trung trực nằm ngoài tam giác.
ta có : Góc CAB = GÓc PQG ( 2 góc đối đỉnh ) . theo tính chất của góc nt , taco : Góc CBA = 1/2 cung AC . Góc APQ = 1/2 sd AQ(1) . theo t/c của góc tạo bởi tia tiếp tuyến và dây cung ta có ; GÓC CBA = 1/2 cung AC . APQ + 1/2 sđ AQ ( 2) . TỪ (1) , ( 2 ) => GÓC CBA = APQ . mà 2 góc này ở vị trí soletrong = > BC song song với QP
xAC=QAy(hai góc đối đỉnh)
theo tính chất của 2 góc được tạo bởi tia tiếp tuyến
=> xAC=1/2sđ cung AC,QAy=1/2sđ cungAQ(1)
theo tính chất của góc nội tiếp,ta có
=> ABC=1/2 sđ cung AC,APQ=1/2sđ cung AQ(2)
từ (1),(2)=> ABC=APQ
=> QP//BC
A B C T K O P S E F G I
a) Áp dụng tính chất của góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung, ta có:
\(\widehat{TAB}=\widehat{TCA}\)
Suy ra \(\Delta\)TAB ~ \(\Delta\)TCA (g.g) \(\Rightarrow\frac{TA}{TC}=\frac{TB}{TA}\Rightarrow TA^2=TB.TC\)(đpcm)
Hai điểm A và K cùng nằm trên (T) nên \(\Delta\)ATK cân tại T => \(\widehat{TAK}=\widehat{TKA}\)(1)
Dễ thấy góc TKA là góc ngoài của \(\Delta\)ACK => \(\widehat{TKA}=\widehat{CAK}+\widehat{ACK}\)
\(\Rightarrow\widehat{CAK}=\widehat{TKA}-\widehat{ACK}\)(2)
Ta có: \(\widehat{BAK}=\widehat{TAK}-\widehat{TAB}=\widehat{TAK}-\widehat{ACB}\)(Do \(\widehat{TAB}=\widehat{ACB}\))
hay \(\widehat{BAK}=\widehat{TAK}-\widehat{ACK}\)(3)
Từ (1); (2) và (3) suy ra: \(\widehat{BAK}=\widehat{CAK}\)=> AK là tia phân giác của \(\widehat{BAC}\)(đpcm).
b) Ta có: \(\frac{TA}{TC}=\frac{TB}{TA}\)=> \(\frac{TP}{TC}=\frac{TB}{TP}\)(P và A thuộc (T))
Từ đó ta chứng minh được: \(\Delta\)TBP ~ \(\Delta\)TPC (c.g.c) => \(\widehat{TPB}=\widehat{TCP}\)
Xét \(\Delta\)BPC: Tia PT nằm ngoài tam giác thỏa mãn \(\widehat{TPB}=\widehat{TCP}\)
Vậy nên TP là tiếp tuyến của đường tròn ngoại tiếp \(\Delta\)BPC (đpcm).
c) Gọi giao điểm của của AT và EF kéo dài là G, EF cắt AP tại điểm I.
Ta thấy tứ giác BEFC nội tiếp (O) => \(\widehat{BCP}=\widehat{EFP}\)hay \(\widehat{EFP}=\widehat{TCP}\)
Mà \(\widehat{TPB}=\widehat{TCP}\)(cmt) => \(\widehat{EFP}=\widehat{TPB}\)
Vì 2 góc trên nằm ở vị trí so le trong nên TP // EF hay TP // GI
Lại có: \(\Delta\)ATP cân tại T có GI // TP (G\(\in\)AT; I\(\in\)AP) => \(\Delta\)AGI cân tại G => \(\widehat{GAI}=\widehat{GIA}\)(4)
\(\widehat{EAI}=\widehat{GAI}-\widehat{GAE}\)(5); \(\widehat{FAI}=\widehat{GIA}-\widehat{AFG}\)(6)
Dễ chứng minh \(\widehat{GAE}=\widehat{AFG}\)(7)
Từ (4); (5); (6) và (7) => \(\widehat{EAI}=\widehat{FAI}\) hay \(\widehat{EAS}=\widehat{FAS}\)
Mà tứ giác AESF nội tiếp (O) => \(\widehat{EAS}=\widehat{EFS}\)và \(\widehat{FAS}=\widehat{FES}\)
Từ đó ta có: \(\widehat{EFS}=\widehat{FES}\)=> Tam giác ESF cân tại S => S nằm trên đường trung trực của EF
Mà EF là dây cung của (O) nên O cũng nằm trên trung trực của EF
Do đó SO là trung trực của EF hay \(SO\perp EF\)(đpcm).
Xin lỗi bạn, 2 góc EFP và TPB là hai góc đồng vị, không phải so le trong nhé.
a. Đúng
b. Sai vì hai đường tròn có ba điểm chung phân biệt thì chúng trùng nhau
c. Sai vì tam giác vuông có tâm đường tròn ngoại tiếp nằm trên cạnh huyền, tam giác tù giao điểm của ba đường trung trực nằm ngoài tam giác.