Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm theo cách cấp 1 nhé.
12 người gấp 3 người số lần là:
12:3=4 (lần)
=>Nếu 12 người làm cỏ cánh đồng dó hết:
6:4=1,5 (giờ)
Vậy .......
bạn ơi bn lấy ảnh mạng phải ko
hình ảnh girl xinh đáng yêu và quyến rũ nhất Việt Nam - Ảnh đẹp
Theo hình vẽ thì m // n, p // q.
Cách kiểm tra: Vẽ một đường thẳng tùy ý cắt p, q. Đo hai góc đồng vị hoặc góc so le trong được tạo thành xem có bằng nhau không. Nếu hai góc bằng nhau thì hai đường thẳng p và q song song, nếu hai góc không bằng nhau thì hai đường thẳng p và q không song song.
y tỉ lệ thuận với x theo hệ số tỉ lệ là \(\dfrac{-1}{2}\) => y = \(\dfrac{-1}{2}\)x
z tỉ lệ thuận với y theo hệ số tỉ lệ là \(\dfrac{-3}{5}\) => z = \(\dfrac{-3}{5}\)y = \(\dfrac{-3}{5}\) . \(\dfrac{-1}{2}\)x = \(\dfrac{3}{10}\)x
Vậy z tỉ lệ thuận với y theo hệ số tỉ lệ là \(\dfrac{3}{10}\)
Ta có y tỉ lệ thận với x theo hệ số \(-\dfrac{1}{2}\) nên
\(y=-\dfrac{1}{2}x\)
Lại có z tỉ lệ thuận với y theo hệ số \(-\dfrac{3}{5}\) nên
\(z=-\dfrac{3}{5}y\)
Hay \(z=\left(-\dfrac{3}{5}\right)\cdot\left(-\dfrac{1}{2}\right)x\)
\(z=\dfrac{3}{10}x\)
Vậy z tỉ lệ thuận với x theo hệ số tỉ lệ là \(\dfrac{3}{10}\)
F=|x-1|+|x-2|+|x-3|+...+|x-100|=|x-1|+|2-x|+|x-3|+...+|100-x|
Áp dụng bđt |a|+|b|\(\ge\)|a+b|, ta có:
F=|x-1|+|2-x|+|x-3|+...+|100-x| \(\ge\) |x-1+2-x+x-3+...+100-x| = |50| = 50
=> F\(\ge\)50 => \(Min_F=50\)
P/s: mấy thánh toán đi ngang cho mik hỏi giải vậy có đúng hog?
\(F=\left|x-1\right|+\left|x-2\right|+....+\left|x-99\right|+\left|x-100\right|\)
\(F=\left(\left|x-1\right|+\left|x-100\right|\right)+\left(\left|x-2\right|+\left|x-99\right|\right)+.....+\left(\left|x-50\right|+\left|x-51\right|\right)\)
\(F=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\)
(do \(\left|-A\left(x\right)\right|=\left|A\left(x\right)\right|\))
Với mọi giá trị của \(x\in R\) ta có:
\(\left|x-1\right|\ge1;\left|x-2\right|\ge x-2;.....;\left|99-x\right|\ge99-x;\left|100-x\right|\ge100-x\)
\(\Rightarrow\left|x-1\right|+\left|100-x\right|\ge x-1+100-x\ge99\)
\(\left|x-2\right|+\left|99-x\right|\ge x-2+99-x\ge97\).............
\(\left|x-50\right|+\left|51-x\right|\ge x-50+51-x\ge1\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge99+97+.....+3+1\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge\dfrac{\left(99+1\right).50}{2}\)
\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge2500\)
Dấu "=" sảy ra khi:
\(\left\{{}\begin{matrix}x-50\ge0\\51-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge50\\x\le51\end{matrix}\right.\Rightarrow50\le x\le51\)
Vậy GTNN của biểu thức F là 2500 đạt được khi và chỉ khi \(50\le x\le51\)
Mình cũng không chắc đâu! Chúc bạn học tốt!!!
no no no
tui ko phải là ko bít đổi mà là ko đổi đc !!!
2115 = (3 . 7)15 = 315 . 715 < 315 . 716 = (33)5 . (72)8 = 275 . 498
Vậy 2115 < 275 . 498
45^10*5^20/75^15
=(3^2*5)^10*5^20/(3*5^2)^15
=3^20*5^10*5^20/3^15*5^30
=3^20*5^30/3^15*5^30
=3^5=243